In this paper, we bring consumer theory to bear in the analysis of Fisher markets whose buyers have arbitrary continuous, concave, homogeneous (CCH) utility functions representing locally non-satiated preferences. The main tools we use are the dual concepts of expenditure minimization and indirect utility maximization. First, we use expenditure functions to construct a new convex program whose dual, like the dual of the Eisenberg-Gale program, characterizes the equilibrium prices of CCH Fisher markets. We then prove that the subdifferential of the dual of our convex program is equal to the negative excess demand in the associated market, which makes generalized gradient descent equivalent to computing equilibrium prices via t\^atonnement. Finally, we run a series of experiments which suggest that t\^atonnement may converge at a rate of $O\left(\frac{(1+E)}{t^2}\right)$ in CCH Fisher markets that comprise buyers with elasticity of demand bounded by $E$. Our novel characterization of equilibrium prices may provide a path to proving the convergence of t\^atonnement in Fisher markets beyond those in which buyers utilities exhibit constant elasticity of substitution.
Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained. We improve on the abstract results obtained with the functional approach by proposing four different ways of estimating the residual errors based on the extent the approximate solution has conservation properties, i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical effectiveness of our theoretical results through numerical experiments using four different discretization methods for synthetic problems and applications based on benchmarks of flow in fractured porous media.
We present a sheaf-theoretic construction of shape space -- the space of all shapes. We do this by describing a homotopy sheaf on the poset category of constructible sets, where each set is mapped to its Persistent Homology Transform (PHT). Recent results that build on fundamental work of Schapira have shown that this transform is injective, thus making the PHT a good summary object for each shape. Our homotopy sheaf result allows us to "glue" PHTs of different shapes together to build up the PHT of a larger shape. In the case where our shape is a polyhedron we prove a generalized nerve lemma for the PHT. Finally, by re-examining the sampling result of Smale-Niyogi-Weinberger, we show that we can reliably approximate the PHT of a manifold by a polyhedron up to arbitrary precision.
The number of down-steps between pairs of up-steps in $k_t$-Dyck paths, a generalization of Dyck paths consisting of steps $\{(1, k), (1, -1)\}$ such that the path stays (weakly) above the line $y=-t$, is studied. Results are proved bijectively and by means of generating functions, and lead to several interesting identities as well as links to other combinatorial structures. In particular, there is a connection between $k_t$-Dyck paths and perforation patterns for punctured convolutional codes (binary matrices) used in coding theory. Surprisingly, upon restriction to usual Dyck paths this yields a new combinatorial interpretation of Catalan numbers.
Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.
In this article we implement a method for the computation of a nonlinear elliptic problem with nonstandard growth driven by the $p(x)-$Laplacian operator. Our implementation is based in the {\em decomposition--coordination} method that allows us, via an iterative process, to solve in each step a linear differential equation and a nonlinear algebraic equation. Our code is implemented in {\sc MatLab} in 2 dimensions and turns out to be extremely efficient from the computational point of view.
In this paper, we propose a modified nonlinear conjugate gradient (NCG) method for functions with a non-Lipschitz continuous gradient. First, we present a new formula for the conjugate coefficient \beta_k in NCG, conducting a search direction that provides an adequate function decrease. We can derive that our NCG algorithm guarantees strongly convergent for continuous differential functions without Lipschitz continuous gradient. Second, we present a simple interpolation approach that could automatically achieve shrinkage, generating a step length satisfying the standard Wolfe conditions in each step. Our framework considerably broadens the applicability of NCG and preserves the superior numerical performance of the PRP-type methods.
Integrated Sensing and Communication (ISAC) is recognized as a promising technology for the next-generation wireless networks. In this paper, we provide a general framework to reveal the fundamental tradeoff between sensing and communications (S&C), where a unified ISAC waveform is exploited to perform dual-functional tasks. In particular, we define the Cramer-Rao bound (CRB)-rate region to characterize the S&C tradeoff, and propose a pentagon inner bound of the region. We show that the two corner points of the CRB-rate region can be achieved by the conventional Gaussian waveform and a novel strategy referred to as successive hypersphere coding, respectively. Moreover, we also offer our insights into transmission approaches achieving the boundary of the CRB-rate region, namely the Shannon-Fisher information flow.
The quest to understand consciousness, once the purview of philosophers and theologians, is now actively pursued by scientists of many stripes. We examine consciousness from the perspective of theoretical computer science (TCS), a branch of mathematics concerned with understanding the underlying principles of computation and complexity, including the implications and surprising consequences of resource limitations. In the spirit of Alan Turing's simple yet powerful definition of a computer, the Turing Machine (TM), and perspective of computational complexity theory, we formalize a modified version of the Global Workspace Theory (GWT) of consciousness originated by cognitive neuroscientist Bernard Baars and further developed by him, Stanislas Dehaene, Jean-Pierre Changeaux and others. We are not looking for a complex model of the brain nor of cognition, but for a simple computational model of (the admittedly complex concept of) consciousness. We do this by defining the Conscious Turing Machine (CTM), also called a conscious AI, and then we define consciousness and related notions in the CTM. While these are only mathematical (TCS) definitions, we suggest why the CTM has the feeling of consciousness. The TCS perspective provides a simple formal framework to employ tools from computational complexity theory and machine learning to help us understand consciousness and related concepts. Previously we explored high level explanations for the feelings of pain and pleasure in the CTM. Here we consider three examples related to vision (blindsight, inattentional blindness, and change blindness), followed by discussions of dreams, free will, and altered states of consciousness.
Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.
We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'