亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantifying the semantic similarity between database queries is a critical challenge with broad applications, ranging from query log analysis to automated educational assessment of SQL skills. Traditional methods often rely solely on syntactic comparisons or are limited to checking for semantic equivalence. This paper introduces a novel graph-based approach to measure the semantic dissimilarity between SQL queries. Queries are represented as nodes in an implicit graph, while the transitions between nodes are called edits, which are weighted by semantic dissimilarity. We employ shortest path algorithms to identify the lowest-cost edit sequence between two given queries, thereby defining a quantifiable measure of semantic distance. A prototype implementation of this technique has been evaluated through an empirical study, which strongly suggests that our method provides more accurate and comprehensible grading compared to existing techniques. Moreover, the results indicate that our approach comes close to the quality of manual grading, making it a robust tool for diverse database query comparison tasks.

相關內容

Automator是蘋果公司為他們的Mac OS X系統開發的一款軟件。 只要通過點擊拖拽鼠標等操作就可以將一系列動作組合成一個工作流,從而幫助你自動的(可重復的)完成一些復雜的工作。Automator還能橫跨很多不同種類的程序,包括:查找器、Safari網絡瀏覽器、iCal、地址簿或者其他的一些程序。它還能和一些第三方的程序一起工作,如微軟的Office、Adobe公司的Photoshop或者Pixelmator等。

The rapid proliferation of large language models and natural language processing (NLP) applications creates a crucial need for uncertainty quantification to mitigate risks such as hallucinations and to enhance decision-making reliability in critical applications. Conformal prediction is emerging as a theoretically sound and practically useful framework, combining flexibility with strong statistical guarantees. Its model-agnostic and distribution-free nature makes it particularly promising to address the current shortcomings of NLP systems that stem from the absence of uncertainty quantification. This paper provides a comprehensive survey of conformal prediction techniques, their guarantees, and existing applications in NLP, pointing to directions for future research and open challenges.

Rate split multiple access (RSMA) has been proven as an effective communication scheme for 5G and beyond, especially in vehicular scenarios. However, RSMA requires complicated iterative algorithms for proper resource allocation, which cannot fulfill the stringent latency requirement in resource constrained vehicles. Although data driven approaches can alleviate this issue, they suffer from poor generalizability and scarce training data. In this paper, we propose a fractional programming (FP) based deep unfolding (DU) approach to address resource allocation problem for a weighted sum rate optimization in RSMA. By carefully designing the penalty function, we couple the variable update with projected gradient descent algorithm (PGD). Following the structure of PGD, we embed few learnable parameters in each layer of the DU network. Through extensive simulation, we have shown that the proposed model-based neural networks has similar performance as optimal results given by traditional algorithm but with much lower computational complexity, less training data, and higher resilience to test set data and out-of-distribution (OOD) data.

This paper studies the controller synthesis problem for nonlinear control systems under linear temporal logic (LTL) specifications using zonotope techniques. A local-to-global control strategy is proposed for the desired specification expressed as an LTL formula. First, a novel approach is developed to divide the state space into finite zonotopes and constrained zonotopes, which are called cells and allowed to intersect with the neighbor cells. Second, from the intersection relation, a graph among all cells is generated to verify the realization of the accepting path for the LTL formula. The realization verification determines if there is a need for the control design, and also results in finite local LTL formulas. Third, once the accepting path is realized, a novel abstraction-based method is derived for the controller design. In particular, we only focus on the cells from the realization verification and approximate each cell thanks to properties of zonotopes. Based on local symbolic models and local LTL formulas, an iterative synthesis algorithm is proposed to design all local abstract controllers, whose existence and combination establish the global controller for the LTL formula. Finally, the proposed framework is illustrated via a path planning problem of mobile robots.

Model size and inference speed at deployment time, are major challenges in many deep learning applications. A promising strategy to overcome these challenges is quantization. However, a straightforward uniform quantization to very low precision can result in significant accuracy loss. Mixed-precision quantization, based on the idea that certain parts of the network can accommodate lower precision without compromising performance compared to other parts, offers a potential solution. In this work, we present High Granularity Quantization (HGQ), an innovative quantization-aware training method designed to fine-tune the per-weight and per-activation precision in an automatic way for ultra-low latency and low power neural networks which are to be deployed on FPGAs. We demonstrate that HGQ can outperform existing methods by a substantial margin, achieving resource reduction by up to a factor of 20 and latency improvement by a factor of 5 while preserving accuracy.

As modern systems become ever more connected with complex dynamic coupling relationships, the development of safe control methods for such networked systems becomes paramount. In this paper, we define a general networked model with coupled dynamics and local control and discuss the relationship of node-level safety definitions for individual agents with local neighborhood dynamics. We define a node-level barrier function (NBF), node-level control barrier function (NCBF), and collaborative node-level barrier function (cNCBF) and provide conditions under which sets defined by these functions will be forward invariant. We use collaborative node-level barrier functions to construct a novel distributed algorithm for the safe control of collaborating network agents and provide conditions under which the algorithm is guaranteed to converge to a viable set of safe control actions for all agents or a terminally infeasible state for at least one agent. We introduce the notion of non-compliance of network neighbors as a metric of robustness for collaborative safety for a given network state and chosen barrier function hyper-parameters. We illustrate these results on a networked susceptible-infected-susceptible (SIS) model.

Image-level regression is an important task in Earth observation, where visual domain and label shifts are a core challenge hampering generalization. However, cross-domain regression with remote sensing data remains understudied due to the absence of suited datasets. We introduce a new dataset with aerial and satellite imagery in five countries with three forest-related regression tasks. To match real-world applicative interests, we compare methods through a restrictive setup where no prior on the target domain is available during training, and models are adapted with limited information during testing. Building on the assumption that ordered relationships generalize better, we propose manifold diffusion for regression as a strong baseline for transduction in low-data regimes. Our comparison highlights the comparative advantages of inductive and transductive methods in cross-domain regression.

There has been growing interest in audio-language retrieval research, where the objective is to establish the correlation between audio and text modalities. However, most audio-text paired datasets often lack rich expression of the text data compared to the audio samples. One of the significant challenges facing audio-text datasets is the presence of similar or identical captions despite different audio samples. Therefore, under many-to-one mapping conditions, audio-text datasets lead to poor performance of retrieval tasks. In this paper, we propose a novel approach to tackle the data imbalance problem in audio-language retrieval task. To overcome the limitation, we introduce a method that employs a distance sampling-based paraphraser leveraging ChatGPT, utilizing distance function to generate a controllable distribution of manipulated text data. For a set of sentences with the same context, the distance is used to calculate a degree of manipulation for any two sentences, and ChatGPT's few-shot prompting is performed using a text cluster with a similar distance defined by the Jaccard similarity. Therefore, ChatGPT, when applied to few-shot prompting with text clusters, can adjust the diversity of the manipulated text based on the distance. The proposed approach is shown to significantly enhance performance in audio-text retrieval, outperforming conventional text augmentation techniques.

As a primary means of information acquisition, information retrieval (IR) systems, such as search engines, have integrated themselves into our daily lives. These systems also serve as components of dialogue, question-answering, and recommender systems. The trajectory of IR has evolved dynamically from its origins in term-based methods to its integration with advanced neural models. While the neural models excel at capturing complex contextual signals and semantic nuances, thereby reshaping the IR landscape, they still face challenges such as data scarcity, interpretability, and the generation of contextually plausible yet potentially inaccurate responses. This evolution requires a combination of both traditional methods (such as term-based sparse retrieval methods with rapid response) and modern neural architectures (such as language models with powerful language understanding capacity). Meanwhile, the emergence of large language models (LLMs), typified by ChatGPT and GPT-4, has revolutionized natural language processing due to their remarkable language understanding, generation, generalization, and reasoning abilities. Consequently, recent research has sought to leverage LLMs to improve IR systems. Given the rapid evolution of this research trajectory, it is necessary to consolidate existing methodologies and provide nuanced insights through a comprehensive overview. In this survey, we delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers. Additionally, we explore promising directions within this expanding field.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Conventionally, spatiotemporal modeling network and its complexity are the two most concentrated research topics in video action recognition. Existing state-of-the-art methods have achieved excellent accuracy regardless of the complexity meanwhile efficient spatiotemporal modeling solutions are slightly inferior in performance. In this paper, we attempt to acquire both efficiency and effectiveness simultaneously. First of all, besides traditionally treating H x W x T video frames as space-time signal (viewing from the Height-Width spatial plane), we propose to also model video from the other two Height-Time and Width-Time planes, to capture the dynamics of video thoroughly. Secondly, our model is designed based on 2D CNN backbones and model complexity is well kept in mind by design. Specifically, we introduce a novel multi-view fusion (MVF) module to exploit video dynamics using separable convolution for efficiency. It is a plug-and-play module and can be inserted into off-the-shelf 2D CNNs to form a simple yet effective model called MVFNet. Moreover, MVFNet can be thought of as a generalized video modeling framework and it can specialize to be existing methods such as C2D, SlowOnly, and TSM under different settings. Extensive experiments are conducted on popular benchmarks (i.e., Something-Something V1 & V2, Kinetics, UCF-101, and HMDB-51) to show its superiority. The proposed MVFNet can achieve state-of-the-art performance with 2D CNN's complexity.

北京阿比特科技有限公司