亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes and analyzes a novel efficient high-order finite volume method for the ideal magnetohydrodynamics (MHD). As a distinctive feature, the method simultaneously preserves a discretely divergence-free (DDF) constraint on the magnetic field and the positivity-preserving (PP) property, which ensures the positivity of density, pressure, and internal energy. To enforce the DDF condition, we design a new discrete projection approach that projects the reconstructed point values at the cell interface into a DDF space, without using any approximation polynomials. This projection method is highly efficient, easy to implement, and particularly suitable for standard high-order finite volume WENO methods, which typically return only the point values in the reconstruction. Moreover, we also develop a new finite volume framework for constructing provably PP schemes for the ideal MHD system. The framework comprises the discrete projection technique, a suitable approximation to the Godunov--Powell source terms, and a simple PP limiter. We provide rigorous analysis of the PP property of the proposed finite volume method, demonstrating that the DDF condition and the proper approximation to the source terms eliminate the impact of magnetic divergence terms on the PP property. The analysis is challenging due to the internal energy function's nonlinearity and the intricate relationship between the DDF and PP properties. To address these challenges, the recently developed geometric quasilinearization approach is adopted, which transforms a nonlinear constraint into a family of linear constraints. Finally, we validate the effectiveness of the proposed method through several benchmark and demanding numerical examples. The results demonstrate that the proposed method is robust, accurate, and highly effective, confirming the significance of the proposed DDF projection and PP techniques.

相關內容

The phenomenon of linear motion of conductor in a magnetic field is commonly found in electric machineries such as, electromagnetic brakes, linear induction motor, electromagnetic flowmeter etc. The design and analysis of the same requires an accurate evaluation of induced currents and the associated reaction magnetic fields. The finite element method is a generally employed numerical technique for this purpose. However, it needs stabilization techniques to provide an accurate solution. In this work, such a stabilization technique is developed for the edge elements. The stability and hence the accuracy is brought in by a suitable representation of the source term. The stability and accuracy of the proposed scheme is first shown analytically and then demonstrated with the help of 2D and 3D simulations. The proposed scheme is parameter-free and it would require a graded regular mesh along the direction of motion.

Image smoothing is by reducing pixel-wise gradients to smooth out details. As existing methods always rely on gradients to determine smoothing manners, it is difficult to distinguish structures and details to handle distinctively due to the overlapped ranges of gradients for structures and details. Thus, it is still challenging to achieve high-quality results, especially on preserving weak structures and removing high-contrast details. In this paper, we address this challenge by improving the real-time optimization-based method via iterative least squares (called ILS). We observe that 1) ILS uses gradients as the independent variable in its penalty function for determining smoothing manners, and 2) the framework of ILS can still work for image smoothing when we use some values instead of gradients in the penalty function. Thus, corresponding to the properties of pixels on structures or not, we compute some values to use in the penalty function to determine smoothing manners, and so we can handle structures and details distinctively, no matter whether their gradients are high or low. As a result, we can conveniently remove high-contrast details while preserving weak structures. Moreover, such values can be adjusted to accelerate optimization computation, so that we can use fewer iterations than the original ILS method for efficiency. This also reduces the changes onto structures to help structure preservation. Experimental results show our advantages over existing methods on efficiency and quality.

This work proposes four novel hybrid quadrature schemes for the efficient and accurate evaluation of weakly singular boundary integrals (1/r kernel) on arbitrary smooth surfaces. Such integrals appear in boundary element analysis for several partial differential equations including the Stokes equation for viscous flow and the Helmholtz equation for acoustics. The proposed quadrature schemes apply a Duffy transform-based quadrature rule to surface elements containing the singularity and classical Gaussian quadrature to the remaining elements. Two of the four schemes additionally consider a special treatment for elements near to the singularity, where refined Gaussian quadrature and a new moment-fitting quadrature rule are used. The hybrid quadrature schemes are systematically studied on flat B-spline patches and on NURBS spheres considering two different sphere discretizations: An exact single-patch sphere with degenerate control points at the poles and an approximate discretization that consist of six patches with regular elements. The efficiency of the quadrature schemes is further demonstrated in boundary element analysis for Stokes flow, where steady problems with rotating and translating curved objects are investigated in convergence studies for both, mesh and quadrature refinement. Much higher convergence rates are observed for the proposed new schemes in comparison to classical schemes.

This work deals with the numerical solution of systems of oscillatory second-order differential equations which often arise from the semi-discretization in space of partial differential equations. Since these differential equations exhibit (pronounced or highly) oscillatory behavior, standard numerical methods are known to perform poorly. Our approach consists in directly discretizing the problem by means of Gautschi-type integrators based on $\operatorname{sinc}$ matrix functions. The novelty contained here is that of using a suitable rational approximation formula for the $\operatorname{sinc}$ matrix function to apply a rational Krylov-like approximation method with suitable choices of poles. In particular, we discuss the application of the whole strategy to a finite element discretization of the wave equation.

Based on more than three decades of rod finite element theory, this publication unifies all the successful contributions found in literature and eradicates the arising drawbacks like loss of objectivity, locking, path-dependence and redundant coordinates. Specifically, the idea of interpolating the nodal orientations using relative rotation vectors, proposed by Crisfield and Jeleni\'c in 1999, is extended to the interpolation of nodal Euclidean transformation matrices with the aid of relative twists; a strategy that arises from the SE(3)-structure of the Cosserat rod kinematics. Applying a Petrov-Galerkin projection method, we propose a novel rod finite element formulation where the virtual displacements and rotations as well as the translational and angular velocities are interpolated instead of using the consistent variations and time-derivatives of the introduced interpolation formula. Properties such as the intrinsic absence of locking, preservation of objectivity after discretization and parametrization in terms of a minimal number of nodal unknowns are demonstrated by conclusive numerical examples in both statics and dynamics.

This paper presents a pressure-robust enriched Galerkin (EG) method for the Brinkman equations with minimal degrees of freedom based on EG velocity and pressure spaces. The velocity space consists of linear Lagrange polynomials enriched by a discontinuous, piecewise linear, and mean-zero vector function per element, while piecewise constant functions approximate the pressure. We derive, analyze, and compare two EG methods in this paper: standard and robust methods. The standard method requires a mesh size to be less than a viscous parameter to produce stable and accurate velocity solutions, which is impractical in the Darcy regime. Therefore, we propose the pressure-robust method by utilizing a velocity reconstruction operator and replacing EG velocity functions with a reconstructed velocity. The robust method yields error estimates independent of a pressure term and shows uniform performance from the Stokes to Darcy regimes, preserving minimal degrees of freedom. We prove well-posedness and error estimates for both the standard and robust EG methods. We finally confirm theoretical results through numerical experiments with two- and three-dimensional examples and compare the methods' performance to support the need for the robust method.

In this paper, we present a pressure-robust enriched Galerkin (EG) scheme for solving the Stokes equations, which is an enhanced version of the EG scheme for the Stokes problem proposed in [Son-Young Yi, Xiaozhe Hu, Sanghyun Lee, James H. Adler, An enriched Galerkin method for the Stokes equations, Computers and Mathematics with Applications, accepted, 2022]. The pressure-robustness is achieved by employing a velocity reconstruction operator on the load vector on the right-hand side of the discrete system. An a priori error analysis proves that the velocity error is independent of the pressure and viscosity. We also propose and analyze a perturbed version of our pressure-robust EG method that allows for the elimination of the degrees of freedom corresponding to the discontinuous component of the velocity vector via static condensation. The resulting method can be viewed as a stabilized $H^1$-conforming $\mathbb{P}_1$-$\mathbb{P}_0$ method. Further, we consider efficient block preconditioners whose performances are independent of the viscosity. The theoretical results are confirmed through various numerical experiments in two and three dimensions.

Physics informed neural networks (PINNs) have emerged as a powerful tool to provide robust and accurate approximations of solutions to partial differential equations (PDEs). However, PINNs face serious difficulties and challenges when trying to approximate PDEs with dominant hyperbolic character. This research focuses on the development of a physics informed deep learning framework to approximate solutions to nonlinear PDEs that can develop shocks or discontinuities without any a-priori knowledge of the solution or the location of the discontinuities. The work takes motivation from finite element method that solves for solution values at nodes in the discretized domain and use these nodal values to obtain a globally defined solution field. Built on the rigorous mathematical foundations of the discontinuous Galerkin method, the framework naturally handles imposition of boundary conditions (Neumann/Dirichlet), entropy conditions, and regularity requirements. Several numerical experiments and validation with analytical solutions demonstrate the accuracy, robustness, and effectiveness of the proposed framework.

In this paper, we present a method to encrypt dynamic controllers that can be implemented through most homomorphic encryption schemes, including somewhat, leveled fully, and fully homomorphic encryption. To this end, we represent the output of the given controller as a linear combination of a fixed number of previous inputs and outputs. As a result, the encrypted controller involves only a limited number of homomorphic multiplications on every encrypted data, assuming that the output is re-encrypted and transmitted back from the actuator. A guidance for parameter choice is also provided, ensuring that the encrypted controller achieves predefined performance for an infinite time horizon. Furthermore, we propose a customization of the method for Ring-Learning With Errors (Ring-LWE) based cryptosystems, where a vector of messages can be encrypted into a single ciphertext and operated simultaneously, thus reducing computation and communication loads. Unlike previous results, the proposed customization does not require extra algorithms such as rotation, other than basic addition and multiplication. Simulation results demonstrate the effectiveness of the proposed method.

We present an efficient matrix-free geometric multigrid method for the elastic Helmholtz equation, and a suitable discretization. Many discretization methods had been considered in the literature for the Helmholtz equations, as well as many solvers and preconditioners, some of which are adapted for the elastic version of the equation. However, there is very little work considering the reciprocity of discretization and a solver. In this work, we aim to bridge this gap. By choosing an appropriate stencil for re-discretization of the equation on the coarse grid, we develop a multigrid method that can be easily implemented as matrix-free, relying on stencils rather than sparse matrices. This is crucial for efficient implementation on modern hardware. Using two-grid local Fourier analysis, we validate the compatibility of our discretization with our solver, and tune a choice of weights for the stencil for which the convergence rate of the multigrid cycle is optimal. It results in a scalable multigrid preconditioner that can tackle large real-world 3D scenarios.

北京阿比特科技有限公司