亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Semi-supervised learning (SSL) has attracted enormous attention due to its vast potential of mitigating the dependence on large labeled datasets. The latest methods (e.g., FixMatch) use a combination of consistency regularization and pseudo-labeling to achieve remarkable successes. However, these methods all suffer from the waste of complicated examples since all pseudo-labels have to be selected by a high threshold to filter out noisy ones. Hence, the examples with ambiguous predictions will not contribute to the training phase. For better leveraging all unlabeled examples, we propose two novel techniques: Entropy Meaning Loss (EML) and Adaptive Negative Learning (ANL). EML incorporates the prediction distribution of non-target classes into the optimization objective to avoid competition with target class, and thus generating more high-confidence predictions for selecting pseudo-label. ANL introduces the additional negative pseudo-label for all unlabeled data to leverage low-confidence examples. It adaptively allocates this label by dynamically evaluating the top-k performance of the model. EML and ANL do not introduce any additional parameter and hyperparameter. We integrate these techniques with FixMatch, and develop a simple yet powerful framework called FullMatch. Extensive experiments on several common SSL benchmarks (CIFAR-10/100, SVHN, STL-10 and ImageNet) demonstrate that FullMatch exceeds FixMatch by a large margin. Integrated with FlexMatch (an advanced FixMatch-based framework), we achieve state-of-the-art performance. Source code is at //github.com/megvii-research/FullMatch.

相關內容

Federated Learning (FL) has recently made significant progress as a new machine learning paradigm for privacy protection. Due to the high communication cost of traditional FL, one-shot federated learning is gaining popularity as a way to reduce communication cost between clients and the server. Most of the existing one-shot FL methods are based on Knowledge Distillation; however, {distillation based approach requires an extra training phase and depends on publicly available data sets or generated pseudo samples.} In this work, we consider a novel and challenging cross-silo setting: performing a single round of parameter aggregation on the local models without server-side training. In this setting, we propose an effective algorithm for Model Aggregation via Exploring Common Harmonized Optima (MA-Echo), which iteratively updates the parameters of all local models to bring them close to a common low-loss area on the loss surface, without harming performance on their own data sets at the same time. Compared to the existing methods, MA-Echo can work well even in extremely non-identical data distribution settings where the support categories of each local model have no overlapped labels with those of the others. We conduct extensive experiments on two popular image classification data sets to compare the proposed method with existing methods and demonstrate the effectiveness of MA-Echo, which clearly outperforms the state-of-the-arts. The source code can be accessed in \url{//github.com/FudanVI/MAEcho}.

Assigning labels to instances is crucial for supervised machine learning. In this paper, we proposed a novel annotation method called Q&A labeling, which involves a question generator that asks questions about the labels of the instances to be assigned, and an annotator who answers the questions and assigns the corresponding labels to the instances. We derived a generative model of labels assigned according to two different Q&A labeling procedures that differ in the way questions are asked and answered. We showed that, in both procedures, the derived model is partially consistent with that assumed in previous studies. The main distinction of this study from previous studies lies in the fact that the label generative model was not assumed, but rather derived based on the definition of a specific annotation method, Q&A labeling. We also derived a loss function to evaluate the classification risk of ordinary supervised machine learning using instances assigned Q&A labels and evaluated the upper bound of the classification error. The results indicate statistical consistency in learning with Q&A labels.

A growing body of literature in fairness-aware ML (fairML) aspires to mitigate machine learning (ML)-related unfairness in automated decision making (ADM) by defining metrics that measure fairness of an ML model and by proposing methods that ensure that trained ML models achieve low values in those measures. However, the underlying concept of fairness, i.e., the question of what fairness is, is rarely discussed, leaving a considerable gap between centuries of philosophical discussion and recent adoption of the concept in the ML community. In this work, we try to bridge this gap by formalizing a consistent concept of fairness and by translating the philosophical considerations into a formal framework for the training and evaluation of ML models in ADM systems. We derive that fairness problems can already arise without the presence of protected attributes, pointing out that fairness and predictive performance are not irreconcilable counterparts, but rather that the latter is necessary to achieve the former. Moreover, we argue why and how causal considerations are necessary when assessing fairness in the presence of protected attributes. We achieve greater linguistic clarity for the discussion of fairML and propose general algorithms for practical applications.

Self-supervised learning has shown impressive results in downstream classification tasks. However, there is limited work in understanding their failure modes and interpreting their learned representations. In this paper, we study the representation space of state-of-the-art self-supervised models including SimCLR, SwaV, MoCo, BYOL, DINO, SimSiam, VICReg and Barlow Twins. Without the use of class label information, we discover discriminative features that correspond to unique physical attributes in images, present mostly in correctly-classified representations. Using these features, we can compress the representation space by up to $40\%$ without significantly affecting linear classification performance. We then propose Self-Supervised Representation Quality Score (or Q-Score), a model-agnostic, unsupervised score that can reliably predict if a given sample is likely to be mis-classified during linear evaluation, achieving AUPRC of 91.45 on ImageNet-100 and 78.78 on ImageNet-1K. Q-Score can also be used as a regularization term on any pre-trained self-supervised model to remedy low-quality representations. Fine-tuning with Q-Score regularization can boost the linear classification performance of state-of-the-art self-supervised models by up to 5.8% on ImageNet-100 and 3.7% on ImageNet-1K compared to their baselines. Finally, using gradient heatmaps and Salient ImageNet masks, we define a metric to quantify the interpretability of each representation. We show that discriminative features are strongly correlated to core attributes and enhancing these features through Q-score regularization makes representations more interpretable across all self-supervised models.

Training a neural network (NN) typically relies on some type of curve-following method, such as gradient descent (GD) (and stochastic gradient descent (SGD)), ADADELTA, ADAM or limited memory algorithms. Convergence for these algorithms usually relies on having access to a large quantity of observations in order to achieve a high level of accuracy and, with certain classes of functions, these algorithms could take multiple epochs of data points to catch on. Herein, a different technique with the potential of achieving dramatically better speeds of convergence, especially for shallow networks, is explored: it does not curve-follow but rather relies on 'decoupling' hidden layers and on updating their weighted connections through bootstrapping, resampling and linear regression. By utilizing resampled observations, the convergence of this process is empirically shown to be remarkably fast and to require a lower amount of data points: in particular, our experiments show that one needs a fraction of the observations that are required with traditional neural network training methods to approximate various classes of functions.

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Deep supervised learning has achieved great success in the last decade. However, its deficiencies of dependence on manual labels and vulnerability to attacks have driven people to explore a better solution. As an alternative, self-supervised learning attracts many researchers for its soaring performance on representation learning in the last several years. Self-supervised representation learning leverages input data itself as supervision and benefits almost all types of downstream tasks. In this survey, we take a look into new self-supervised learning methods for representation in computer vision, natural language processing, and graph learning. We comprehensively review the existing empirical methods and summarize them into three main categories according to their objectives: generative, contrastive, and generative-contrastive (adversarial). We further investigate related theoretical analysis work to provide deeper thoughts on how self-supervised learning works. Finally, we briefly discuss open problems and future directions for self-supervised learning. An outline slide for the survey is provided.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

The goal of few-shot learning is to learn a classifier that generalizes well even when trained with a limited number of training instances per class. The recently introduced meta-learning approaches tackle this problem by learning a generic classifier across a large number of multiclass classification tasks and generalizing the model to a new task. Yet, even with such meta-learning, the low-data problem in the novel classification task still remains. In this paper, we propose Transductive Propagation Network (TPN), a novel meta-learning framework for transductive inference that classifies the entire test set at once to alleviate the low-data problem. Specifically, we propose to learn to propagate labels from labeled instances to unlabeled test instances, by learning a graph construction module that exploits the manifold structure in the data. TPN jointly learns both the parameters of feature embedding and the graph construction in an end-to-end manner. We validate TPN on multiple benchmark datasets, on which it largely outperforms existing few-shot learning approaches and achieves the state-of-the-art results.

北京阿比特科技有限公司