亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Log-concave sampling has witnessed remarkable algorithmic advances in recent years, but the corresponding problem of proving lower bounds for this task has remained elusive, with lower bounds previously known only in dimension one. In this work, we establish the following query lower bounds: (1) sampling from strongly log-concave and log-smooth distributions in dimension $d\ge 2$ requires $\Omega(\log \kappa)$ queries, which is sharp in any constant dimension, and (2) sampling from Gaussians in dimension $d$ (hence also from general log-concave and log-smooth distributions in dimension $d$) requires $\widetilde \Omega(\min(\sqrt\kappa \log d, d))$ queries, which is nearly sharp for the class of Gaussians. Here $\kappa$ denotes the condition number of the target distribution. Our proofs rely upon (1) a multiscale construction inspired by work on the Kakeya conjecture in harmonic analysis, and (2) a novel reduction that demonstrates that block Krylov algorithms are optimal for this problem, as well as connections to lower bound techniques based on Wishart matrices developed in the matrix-vector query literature.

相關內容

Mining cohesive subgraphs from a graph is a fundamental problem in graph data analysis. One notable cohesive structure is $\gamma$-quasi-clique (QC), where each vertex connects at least a fraction $\gamma$ of the other vertices inside. Enumerating maximal $\gamma$-quasi-cliques (MQCs) of a graph has been widely studied. One common practice of finding all MQCs is to (1) find a set of QCs containing all MQCs and then (2) filter out non-maximal QCs. While quite a few algorithms have been developed (which are branch-and-bound algorithms) for finding a set of QCs that contains all MQCs, all focus on sharpening the pruning techniques and devote little effort to improving the branching part. As a result, they provide no guarantee on pruning branches and all have the worst-case time complexity of $O^*(2^n)$, where $O^*$ suppresses the polynomials and $n$ is the number of vertices in the graph. In this paper, we focus on the problem of finding a set of QCs containing all MQCs but deviate from further sharpening the pruning techniques as existing methods do. We pay attention to both the pruning and branching parts and develop new pruning techniques and branching methods that would suit each other better towards pruning more branches both theoretically and practically. Specifically, we develop a new branch-and-bound algorithm called FastQC based on newly developed pruning techniques and branching methods, which improves the worst-case time complexity to $O^*(\alpha_k^n)$, where $\alpha_k$ is a positive real number strictly smaller than 2. Furthermore, we develop a divide-and-conquer strategy for boosting the performance of FastQC. Finally, we conduct extensive experiments on both real and synthetic datasets, and the results show that our algorithms are up to two orders of magnitude faster than the state-of-the-art on real datasets.

We consider a social choice setting in which agents and alternatives are represented by points in a metric space, and the cost of an agent for an alternative is the distance between the corresponding points in the space. The goal is to choose a single alternative to (approximately) minimize the social cost (cost of all agents) or the maximum cost of any agent, when only limited information about the preferences of the agents is given. Previous work has shown that the best possible distortion one can hope to achieve is $3$ when access to the ordinal preferences of the agents is given, even when the distances between alternatives in the metric space are known. We improve upon this bound of $3$ by designing deterministic mechanisms that exploit a bit of cardinal information. We show that it is possible to achieve distortion $1+\sqrt{2}$ by using the ordinal preferences of the agents, the distances between alternatives, and a threshold approval set per agent that contains all alternatives for whom her cost is within an appropriately chosen factor of her cost for her most-preferred alternative. We show that this bound is the best possible for any deterministic mechanism in general metric spaces, and also provide improved bounds for the fundamental case of a line metric.

Gaussian processes scale prohibitively with the size of the dataset. In response, many approximation methods have been developed, which inevitably introduce approximation error. This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior. Therefore in practice, GP models are often as much about the approximation method as they are about the data. Here, we develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended. The most common GP approximations map to an instance in this class, such as methods based on the Cholesky factorization, conjugate gradients, and inducing points. For any method in this class, we prove (i) convergence of its posterior mean in the associated RKHS, (ii) decomposability of its combined posterior covariance into mathematical and computational covariances, and (iii) that the combined variance is a tight worst-case bound for the squared error between the method's posterior mean and the latent function. Finally, we empirically demonstrate the consequences of ignoring computational uncertainty and show how implicitly modeling it improves generalization performance on benchmark datasets.

We consider the adversarial linear contextual bandit setting, which allows for the loss functions associated with each of $K$ arms to change over time without restriction. Assuming the $d$-dimensional contexts are drawn from a fixed known distribution, the worst-case expected regret over the course of $T$ rounds is known to scale as $\tilde O(\sqrt{Kd T})$. Under the additional assumption that the density of the contexts is log-concave, we obtain a second-order bound of order $\tilde O(K\sqrt{d V_T})$ in terms of the cumulative second moment of the learner's losses $V_T$, and a closely related first-order bound of order $\tilde O(K\sqrt{d L_T^*})$ in terms of the cumulative loss of the best policy $L_T^*$. Since $V_T$ or $L_T^*$ may be significantly smaller than $T$, these improve over the worst-case regret whenever the environment is relatively benign. Our results are obtained using a truncated version of the continuous exponential weights algorithm over the probability simplex, which we analyse by exploiting a novel connection to the linear bandit setting without contexts.

The approximate degree of a Boolean function is the minimum degree of real polynomial that approximates it pointwise. For any Boolean function, its approximate degree serves as a lower bound on its quantum query complexity, and generically lifts to a quantum communication lower bound for a related function. We introduce a framework for proving approximate degree lower bounds for certain oracle identification problems, where the goal is to recover a hidden binary string $x \in \{0, 1\}^n$ given possibly non-standard oracle access to it. Our lower bounds apply to decision versions of these problems, where the goal is to compute the parity of $x$. We apply our framework to the ordered search and hidden string problems, proving nearly tight approximate degree lower bounds of $\Omega(n/\log^2 n)$ for each. These lower bounds generalize to the weakly unbounded error setting, giving a new quantum query lower bound for the hidden string problem in this regime. Our lower bounds are driven by randomized communication upper bounds for the greater-than and equality functions.

In the open online dial-a-ride problem, a single server has to deliver transportation requests appearing over time in some metric space, subject to minimizing the completion time. We improve on the best known upper bounds on the competitive ratio on general metric spaces and on the half-line, for both the preemptive and non-preemptive version of the problem. We achieve this by revisiting the algorithm $\textsc{Lazy}$ recently suggested in [WAOA, 2022] and giving an improved and tight analysis. More precisely, we show that it has competitive ratio $2.457$ on general metric spaces and $2.366$ on the half-line. This is the first upper bound that beats known lower bounds of 2.5 for schedule-based algorithms as well as the natural $\textsc{Replan}$ algorithm.

We initiate the study of generalized AC0 circuits comprised of negations and arbitrary unbounded fan-in gates that only need to be constant over inputs of Hamming weight $\ge k$, which we denote GC0$(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ (output $1$ iff $\ge k$ bits are 1) and $k$-$AND$ (output $0$ iff $\ge k$ bits are 0), and thus can be seen as an interpolation between AC0 and TC0. We establish a tight multi-switching lemma for GC0$(k)$ circuits, which bounds the probability that several depth-2 GC0$(k)$ circuits do not simultaneously simplify under a random restriction. We also establish a new depth reduction lemma such that coupled with our multi-switching lemma, we can show many results obtained from the multi-switching lemma for depth-$d$ size-$s$ AC0 circuits lifts to depth-$d$ size-$s^{.99}$ GC0$(.01\log s)$ circuits with no loss in parameters (other than hidden constants). Our result has the following applications: 1.Size-$2^{\Omega(n^{1/d})}$ depth-$d$ GC0$(\Omega(n^{1/d}))$ circuits do not correlate with parity (extending a result of H{\aa}stad (SICOMP, 2014)). 2. Size-$n^{\Omega(\log n)}$ GC0$(\Omega(\log^2 n))$ circuits with $n^{.249}$ arbitrary threshold gates or $n^{.499}$ arbitrary symmetric gates exhibit exponentially small correlation against an explicit function (extending a result of Tan and Servedio (RANDOM, 2019)). 3. There is a seed length $O((\log m)^{d-1}\log(m/\varepsilon)\log\log(m))$ pseudorandom generator against size-$m$ depth-$d$ GC0$(\log m)$ circuits, matching the AC0 lower bound of H{\aa}stad stad up to a $\log\log m$ factor (extending a result of Lyu (CCC, 2022)). 4. Size-$m$ GC0$(\log m)$ circuits have exponentially small Fourier tails (extending a result of Tal (CCC, 2017)).

We give the first tester-learner for halfspaces that succeeds universally over a wide class of structured distributions. Our universal tester-learner runs in fully polynomial time and has the following guarantee: the learner achieves error $O(\mathrm{opt}) + \epsilon$ on any labeled distribution that the tester accepts, and moreover, the tester accepts whenever the marginal is any distribution that satisfies a Poincar\'e inequality. In contrast to prior work on testable learning, our tester is not tailored to any single target distribution but rather succeeds for an entire target class of distributions. The class of Poincar\'e distributions includes all strongly log-concave distributions, and, assuming the Kannan--L\'{o}vasz--Simonovits (KLS) conjecture, includes all log-concave distributions. In the special case where the label noise is known to be Massart, our tester-learner achieves error $\mathrm{opt} + \epsilon$ while accepting all log-concave distributions unconditionally (without assuming KLS). Our tests rely on checking hypercontractivity of the unknown distribution using a sum-of-squares (SOS) program, and crucially make use of the fact that Poincar\'e distributions are certifiably hypercontractive in the SOS framework.

Within the tensor singular value decomposition (T-SVD) framework, existing robust low-rank tensor completion approaches have made great achievements in various areas of science and engineering. Nevertheless, these methods involve the T-SVD based low-rank approximation, which suffers from high computational costs when dealing with large-scale tensor data. Moreover, most of them are only applicable to third-order tensors. Against these issues, in this article, two efficient low-rank tensor approximation approaches fusing randomized techniques are first devised under the order-d (d >= 3) T-SVD framework. On this basis, we then further investigate the robust high-order tensor completion (RHTC) problem, in which a double nonconvex model along with its corresponding fast optimization algorithms with convergence guarantees are developed. To the best of our knowledge, this is the first study to incorporate the randomized low-rank approximation into the RHTC problem. Empirical studies on large-scale synthetic and real tensor data illustrate that the proposed method outperforms other state-of-the-art approaches in terms of both computational efficiency and estimated precision.

We give query complexity lower bounds for convex optimization and the related feasibility problem. We show that quadratic memory is necessary to achieve the optimal oracle complexity for first-order convex optimization. In particular, this shows that center-of-mass cutting-planes algorithms in dimension $d$ which use $\tilde O(d^2)$ memory and $\tilde O(d)$ queries are Pareto-optimal for both convex optimization and the feasibility problem, up to logarithmic factors. Precisely, we prove that to minimize $1$-Lipschitz convex functions over the unit ball to $1/d^4$ accuracy, any deterministic first-order algorithms using at most $d^{2-\delta}$ bits of memory must make $\tilde\Omega(d^{1+\delta/3})$ queries, for any $\delta\in[0,1]$. For the feasibility problem, in which an algorithm only has access to a separation oracle, we show a stronger trade-off: for at most $d^{2-\delta}$ memory, the number of queries required is $\tilde\Omega(d^{1+\delta})$. This resolves a COLT 2019 open problem of Woodworth and Srebro.

北京阿比特科技有限公司