Prompt severity assessment model of confirmed patients who were infected with infectious diseases could enable efficient diagnosis and alleviate the burden on the medical system. This paper provides the development processes of the severity assessment model using machine learning techniques and its application on SARS-CoV-2 patients. Here, we highlight that our model only requires basic patients' basic personal data, allowing for them to judge their own severity. We selected the boosting-based decision tree model as a classifier and interpreted mortality as a probability score after modeling. Specifically, hyperparameters that determine the structure of the tree model were tuned using the Bayesian optimization technique without any knowledge of medical information. As a result, we measured model performance and identified the variables affecting the severity through the model. Finally, we aim to establish a medical system that allows patients to check their own severity and informs them to visit the appropriate clinic center based on the past treatment details of other patients with similar severity.
Early detection of fish diseases and identifying the underlying causes are crucial for farmers to take necessary steps to mitigate the potential outbreak and thus to avert financial losses with apparent negative implications to the national economy. Typically, fish diseases are caused by viruses and bacteria; according to biochemical studies, the presence of certain bacteria and viruses may affect the level of pH, DO, BOD, COD, TSS, TDS, EC, PO43-, NO3-N, and NH3-N in water, resulting in the death of fishes. Besides, natural processes, e.g., photosynthesis, respiration, and decomposition, also contribute to the alteration of water quality that adversely affects fish health. Being motivated by the recent successes of machine learning techniques, a state-of-art machine learning algorithm has been adopted in this paper to detect and predict the degradation of water quality timely and accurately. Thus, it helps to take preemptive steps against potential fish diseases. The experimental results show high accuracy in detecting fish diseases specific to water quality based on the algorithm with real datasets.
Classifiers and other statistics-based machine learning (ML) techniques generalize, or learn, based on various statistical properties of the training data. The assumption underlying statistical ML resulting in theoretical or empirical performance guarantees is that the distribution of the training data is representative of the production data distribution. This assumption often breaks; for instance, statistical distributions of the data may change. We term changes that affect ML performance `data drift' or `drift'. Many classification techniques compute a measure of confidence in their results. This measure might not reflect the actual ML performance. A famous example is the Panda picture that is correctly classified as such with a confidence of about 60\%, but when noise is added it is incorrectly classified as a Gibbon with a confidence of above 99\%. However, the work we report on here suggests that a classifier's measure of confidence can be used for the purpose of detecting data drift. We propose an approach based solely on classifier suggested labels and its confidence in them, for alerting on data distribution or feature space changes that are likely to cause data drift. Our approach identities degradation in model performance and does not require labeling of data in production which is often lacking or delayed. Our experiments with three different data sets and classifiers demonstrate the effectiveness of this approach in detecting data drift. This is especially encouraging as the classification itself may or may not be correct and no model input data is required. We further explore the statistical approach of sequential change-point tests to automatically determine the amount of data needed in order to identify drift while controlling the false positive rate (Type-1 error).
The API economy refers to the widespread integration of API (advanced programming interface) microservices, where software applications can communicate with each other, as a crucial element in business models and functions. The number of possible ways in which such a system could be used is huge. It is thus desirable to monitor the usage patterns and identify when the system is used in a way that was never used before. This provides a warning to the system analysts and they can ensure uninterrupted operation of the system. In this work we analyze both histograms and call graph of API usage to determine if the usage patterns of the system has shifted. We compare the application of nonparametric statistical and Bayesian sequential analysis to the problem. This is done in a way that overcomes the issue of repeated statistical tests and insures statistical significance of the alerts. The technique was simulated and tested and proven effective in detecting the drift in various scenarios. We also mention modifications to the technique to decrease its memory so that it can respond more quickly when the distribution drift occurs at a delay from when monitoring begins.
A density matrix describes the statistical state of a quantum system. It is a powerful formalism to represent both the quantum and classical uncertainty of quantum systems and to express different statistical operations such as measurement, system combination and expectations as linear algebra operations. This paper explores how density matrices can be used as a building block to build machine learning models exploiting their ability to straightforwardly combine linear algebra and probability. One of the main results of the paper is to show that density matrices coupled with random Fourier features could approximate arbitrary probability distributions over $\mathbb{R}^n$. Based on this finding the paper builds different models for density estimation, classification and regression. These models are differentiable, so it is possible to integrate them with other differentiable components, such as deep learning architectures and to learn their parameters using gradient-based optimization. In addition, the paper presents optimization-less training strategies based on estimation and model averaging. The models are evaluated in benchmark tasks and the results are reported and discussed.
In ultracold atom experiments, data often comes in the form of images which suffer information loss inherent in the techniques used to prepare and measure the system. This is particularly problematic when the processes of interest are complicated, such as interactions among excitations in Bose-Einstein condensates (BECs). In this paper, we describe a framework combining machine learning (ML) models with physics-based traditional analyses to identify and track multiple solitonic excitations in images of BECs. We use an ML-based object detector to locate the solitonic excitations and develop a physics-informed classifier to sort solitonic excitations into physically motivated sub-categories. Lastly, we introduce a quality metric quantifying the likelihood that a specific feature is a kink soliton. Our trained implementation of this framework -- SolDet -- is publicly available as an open-source python package. SolDet is broadly applicable to feature identification in cold atom images when trained on a suitable user-provided dataset.
In recent years, larger and deeper models are springing up and continuously pushing state-of-the-art (SOTA) results across various fields like natural language processing (NLP) and computer vision (CV). However, despite promising results, it needs to be noted that the computations required by SOTA models have been increased at an exponential rate. Massive computations not only have a surprisingly large carbon footprint but also have negative effects on research inclusiveness and deployment on real-world applications. Green deep learning is an increasingly hot research field that appeals to researchers to pay attention to energy usage and carbon emission during model training and inference. The target is to yield novel results with lightweight and efficient technologies. Many technologies can be used to achieve this goal, like model compression and knowledge distillation. This paper focuses on presenting a systematic review of the development of Green deep learning technologies. We classify these approaches into four categories: (1) compact networks, (2) energy-efficient training strategies, (3) energy-efficient inference approaches, and (4) efficient data usage. For each category, we discuss the progress that has been achieved and the unresolved challenges.
Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.
The past decade has seen a remarkable series of advances in machine learning, and in particular deep learning approaches based on artificial neural networks, to improve our abilities to build more accurate systems across a broad range of areas, including computer vision, speech recognition, language translation, and natural language understanding tasks. This paper is a companion paper to a keynote talk at the 2020 International Solid-State Circuits Conference (ISSCC) discussing some of the advances in machine learning, and their implications on the kinds of computational devices we need to build, especially in the post-Moore's Law-era. It also discusses some of the ways that machine learning may also be able to help with some aspects of the circuit design process. Finally, it provides a sketch of at least one interesting direction towards much larger-scale multi-task models that are sparsely activated and employ much more dynamic, example- and task-based routing than the machine learning models of today.
Automated machine learning (AutoML) aims to find optimal machine learning solutions automatically given a machine learning problem. It could release the burden of data scientists from the multifarious manual tuning process and enable the access of domain experts to the off-the-shelf machine learning solutions without extensive experience. In this paper, we review the current developments of AutoML in terms of three categories, automated feature engineering (AutoFE), automated model and hyperparameter learning (AutoMHL), and automated deep learning (AutoDL). State-of-the-art techniques adopted in the three categories are presented, including Bayesian optimization, reinforcement learning, evolutionary algorithm, and gradient-based approaches. We summarize popular AutoML frameworks and conclude with current open challenges of AutoML.
In this work, we present a method for tracking and learning the dynamics of all objects in a large scale robot environment. A mobile robot patrols the environment and visits the different locations one by one. Movable objects are discovered by change detection, and tracked throughout the robot deployment. For tracking, we extend the Rao-Blackwellized particle filter of previous work with birth and death processes, enabling the method to handle an arbitrary number of objects. Target births and associations are sampled using Gibbs sampling. The parameters of the system are then learnt using the Expectation Maximization algorithm in an unsupervised fashion. The system therefore enables learning of the dynamics of one particular environment, and of its objects. The algorithm is evaluated on data collected autonomously by a mobile robot in an office environment during a real-world deployment. We show that the algorithm automatically identifies and tracks the moving objects within 3D maps and infers plausible dynamics models, significantly decreasing the modeling bias of our previous work. The proposed method represents an improvement over previous methods for environment dynamics learning as it allows for learning of fine grained processes.