亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a tractable sufficient condition for the consistency of maximum likelihood estimators (MLEs) in partially observed diffusion models, stated in terms of stationary distribution of the associated fully observed diffusion, under the assumption that the set of unknown parameter values is finite. This sufficient condition is then verified in the context of a latent price model of market microstructure, yielding consistency of maximum likelihood estimators of the unknown parameters in this model. Finally, we compute the latter estimators using historical financial data taken from the NASDAQ exchange.

相關內容

Studying conditional independence structure among many variables with few observations is a challenging task. Gaussian Graphical Models (GGMs) tackle this problem by encouraging sparsity in the precision matrix through an $l_p$ regularization with $p\leq1$. However, since the objective is highly non-convex for sub-$l_1$ pseudo-norms, most approaches rely on the $l_1$ norm. In this case frequentist approaches allow to elegantly compute the solution path as a function of the shrinkage parameter $\lambda$. Instead of optimizing the penalized likelihood, the Bayesian formulation introduces a Laplace prior on the precision matrix. However, posterior inference for different $\lambda$ values requires repeated runs of expensive Gibbs samplers. We propose a very general framework for variational inference in GGMs that unifies the benefits of frequentist and Bayesian frameworks. Specifically, we propose to approximate the posterior with a matrix-variate Normalizing Flow defined on the space of symmetric positive definite matrices. As a key improvement on previous work, we train a continuum of sparse regression models jointly for all regularization parameters $\lambda$ and all $l_p$ norms, including non-convex sub-$l_1$ pseudo-norms. This is achieved by conditioning the flow on $p>0$ and on the shrinkage parameter $\lambda$. We have then access with one model to (i) the evolution of the posterior for any $\lambda$ and for any $l_p$ (pseudo-) norms, (ii) the marginal log-likelihood for model selection, and (iii) we can recover the frequentist solution paths as the MAP, which is obtained through simulated annealing.

This study demonstrates the existence of a testable condition for the identification of the causal effect of a treatment on an outcome in observational data, which relies on two sets of variables: observed covariates to be controlled for and a suspected instrument. Under a causal structure commonly found in empirical applications, the testable conditional independence of the suspected instrument and the outcome given the treatment and the covariates has two implications. First, the instrument is valid, i.e. it does not directly affect the outcome (other than through the treatment) and is unconfounded conditional on the covariates. Second, the treatment is unconfounded conditional on the covariates such that the treatment effect is identified. We suggest tests of this conditional independence based on machine learning methods that account for covariates in a data-driven way and investigate their asymptotic behavior and finite sample performance in a simulation study. We also apply our testing approach to evaluating the impact of fertility on female labor supply when using the sibling sex ratio of the first two children as supposed instrument, which by and large points to a violation of our testable implication for the moderate set of socio-economic covariates considered.

We provide algorithms for regression with adversarial responses under large classes of non-i.i.d. instance sequences, on general separable metric spaces, with provably minimal assumptions. We also give characterizations of learnability in this regression context. We consider universal consistency which asks for strong consistency of a learner without restrictions on the value responses. Our analysis shows that such an objective is achievable for a significantly larger class of instance sequences than stationary processes, and unveils a fundamental dichotomy between value spaces: whether finite-horizon mean estimation is achievable or not. We further provide optimistically universal learning rules, i.e., such that if they fail to achieve universal consistency, any other algorithms will fail as well. For unbounded losses, we propose a mild integrability condition under which there exist algorithms for adversarial regression under large classes of non-i.i.d. instance sequences. In addition, our analysis also provides a learning rule for mean estimation in general metric spaces that is consistent under adversarial responses without any moment conditions on the sequence, a result of independent interest.

We propose a framework that integrates classical Monte Carlo simulators and Wasserstein generative adversarial networks to model, estimate, and simulate a broad class of arrival processes with general non-stationary and multi-dimensional random arrival rates. Classical Monte Carlo simulators have advantages at capturing the interpretable "physics" of a stochastic object, whereas neural-network-based simulators have advantages at capturing less-interpretable complicated dependence within a high-dimensional distribution. We propose a doubly stochastic simulator that integrates a stochastic generative neural network and a classical Monte Carlo Poisson simulator, to utilize both advantages. Such integration brings challenges to both theoretical reliability and computational tractability for the estimation of the simulator given real data, where the estimation is done through minimizing the Wasserstein distance between the distribution of the simulation output and the distribution of real data. Regarding theoretical properties, we prove consistency and convergence rate for the estimated simulator under a non-parametric smoothness assumption. Regarding computational efficiency and tractability for the estimation procedure, we address a challenge in gradient evaluation that arise from the discontinuity in the Monte Carlo Poisson simulator. Numerical experiments with synthetic and real data sets are implemented to illustrate the performance of the proposed framework.

Ancestry-specific proteome-wide association studies (PWAS) based on genetically predicted protein expression can reveal complex disease etiology specific to certain ancestral groups. These studies require ancestry-specific models for protein expression as a function of SNP genotypes. In order to improve protein expression prediction in ancestral populations historically underrepresented in genomic studies, we propose a new penalized maximum likelihood estimator for fitting ancestry-specific joint protein quantitative trait loci models. Our estimator borrows information across ancestral groups, while simultaneously allowing for heterogeneous error variances and regression coefficients. We propose an alternative parameterization of our model which makes the objective function convex and the penalty scale invariant. To improve computational efficiency, we propose an approximate version of our method and study its theoretical properties. Our method provides a substantial improvement in protein expression prediction accuracy in individuals of African ancestry, and in a downstream PWAS analysis, leads to the discovery of multiple associations between protein expression and blood lipid traits in the African ancestry population.

We present and analyse a hybridized discontinuous Galerkin method for incompressible flow problems using non-affine cells, proving that it preserves a key invariance property that illudes most methods, namely that any irrotational component of the prescribed force is exactly balanced by the pressure gradient and does not influence the velocity field. This invariance property can be preserved in the discrete problem if the incompressibility constraint is satisfied in a sufficiently strong sense. We derive sufficient conditions to guarantee discretely divergence-free functions are exactly divergence-free, and give examples of divergence-free finite elements on meshes containing triangular, quadrilateral, tetrahedral, or hexahedral cells generated by a (possibly non-affine) map from their respective reference cells. In the case of quadrilateral cells, we prove an optimal error estimate for the velocity field that does not depend on the pressure approximation. Our theoretical analysis is supported by numerical results.

Finite element methods and kinematically coupled schemes that decouple the fluid velocity and structure's displacement have been extensively studied for incompressible fluid-structure interaction (FSI) over the past decade. While these methods are known to be stable and easy to implement, optimal error analysis has remained challenging. Previous work has primarily relied on the classical elliptic projection technique, which is only suitable for parabolic problems and does not lead to optimal convergence of numerical solutions to the FSI problems in the standard $L^2$ norm. In this article, we propose a new kinematically coupled scheme for incompressible FSI thin-structure model and establish a new framework for the numerical analysis of FSI problems in terms of a newly introduced coupled non-stationary Ritz projection, which allows us to prove the optimal-order convergence of the proposed method in the $L^2$ norm. The methodology presented in this article is also applicable to numerous other FSI models and serves as a fundamental tool for advancing research in this field.

Matrix-variate time series data are largely available in applications. However, no attempt has been made to study their conditional heteroskedasticity that is often observed in economic and financial data. To address this gap, we propose a novel matrix generalized autoregressive conditional heteroskedasticity (GARCH) model to capture the dynamics of conditional row and column covariance matrices of matrix time series. The key innovation of the matrix GARCH model is the use of a univariate GARCH specification for the trace of conditional row or column covariance matrix, which allows for the identification of conditional row and column covariance matrices. Moreover, we introduce a quasi maximum likelihood estimator (QMLE) for model estimation and develop a portmanteau test for model diagnostic checking. Simulation studies are conducted to assess the finite-sample performance of the QMLE and portmanteau test. To handle large dimensional matrix time series, we also propose a matrix factor GARCH model. Finally, we demonstrate the superiority of the matrix GARCH and matrix factor GARCH models over existing multivariate GARCH-type models in volatility forecasting and portfolio allocations using three applications on credit default swap prices, global stock sector indices, and future prices.

We present an illustrative study in which we use a mixture of regressions model to improve on an ill-fitting simple linear regression model relating log brain mass to log body mass for 100 placental mammalian species. The slope of the model is of particular scientific interest because it corresponds to a constant that governs a hypothesized allometric power law relating brain mass to body mass. We model these data using an anchored Bayesian mixture of regressions model, which modifies the standard Bayesian Gaussian mixture by pre-assigning small subsets of observations to given mixture components with probability one. These observations (called anchor points) break the relabeling invariance (or label-switching) typical of exchangeable models. In the article, we develop a strategy for selecting anchor points using tools from case influence diagnostics. We compare the performance of three anchoring methodson the allometric data and in simulated settings.

We consider structural equation modeling (SEM) with latent variables for diffusion processes based on high-frequency data. The quasi-likelihood estimators for parameters in the SEM are proposed. The goodness-of-fit test is derived from the quasi-likelihood ratio. We also treat sparse estimation in the SEM. The goodness-of-fit test for the sparse estimation in the SEM is developed. Furthermore, the asymptotic properties of our proposed estimators are examined.

北京阿比特科技有限公司