亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an illustrative study in which we use a mixture of regressions model to improve on an ill-fitting simple linear regression model relating log brain mass to log body mass for 100 placental mammalian species. The slope of the model is of particular scientific interest because it corresponds to a constant that governs a hypothesized allometric power law relating brain mass to body mass. We model these data using an anchored Bayesian mixture of regressions model, which modifies the standard Bayesian Gaussian mixture by pre-assigning small subsets of observations to given mixture components with probability one. These observations (called anchor points) break the relabeling invariance (or label-switching) typical of exchangeable models. In the article, we develop a strategy for selecting anchor points using tools from case influence diagnostics. We compare the performance of three anchoring methodson the allometric data and in simulated settings.

相關內容

Series or orthogonal basis regression is one of the most popular non-parametric regression techniques in practice, obtained by regressing the response on features generated by evaluating the basis functions at observed covariate values. The most routinely used series estimator is based on ordinary least squares fitting, which is known to be minimax rate optimal in various settings, albeit under stringent restrictions on the basis functions and the distribution of covariates. In this work, inspired by the recently developed Forster-Warmuth (FW) learner, we propose an alternative series regression estimator that can attain the minimax estimation rate under strictly weaker conditions imposed on the basis functions and the joint law of covariates, than existing series estimators in the literature. Moreover, a key contribution of this work generalizes the FW-learner to a so-called counterfactual regression problem, in which the response variable of interest may not be directly observed (hence, the name ``counterfactual'') on all sampled units, and therefore needs to be inferred in order to identify and estimate the regression in view from the observed data. Although counterfactual regression is not entirely a new area of inquiry, we propose the first-ever systematic study of this challenging problem from a unified pseudo-outcome perspective. In fact, we provide what appears to be the first generic and constructive approach for generating the pseudo-outcome (to substitute for the unobserved response) which leads to the estimation of the counterfactual regression curve of interest with small bias, namely bias of second order. Several applications are used to illustrate the resulting FW-learner including many nonparametric regression problems in missing data and causal inference literature, for which we establish high-level conditions for minimax rate optimality of the proposed FW-learner.

Bayesian inference and kernel methods are well established in machine learning. The neural network Gaussian process in particular provides a concept to investigate neural networks in the limit of infinitely wide hidden layers by using kernel and inference methods. Here we build upon this limit and provide a field-theoretic formalism which covers the generalization properties of infinitely wide networks. We systematically compute generalization properties of linear, non-linear, and deep non-linear networks for kernel matrices with heterogeneous entries. In contrast to currently employed spectral methods we derive the generalization properties from the statistical properties of the input, elucidating the interplay of input dimensionality, size of the training data set, and variability of the data. We show that data variability leads to a non-Gaussian action reminiscent of a ($\varphi^3+\varphi^4$)-theory. Using our formalism on a synthetic task and on MNIST we obtain a homogeneous kernel matrix approximation for the learning curve as well as corrections due to data variability which allow the estimation of the generalization properties and exact results for the bounds of the learning curves in the case of infinitely many training data points.

Two-sample multiple testing problems of sparse spatial data are frequently arising in a variety of scientific applications. In this article, we develop a novel neighborhood-assisted and posterior-adjusted (NAPA) approach to incorporate both the spatial smoothness and sparsity type side information to improve the power of the test while controlling the false discovery of multiple testing. We translate the side information into a set of weights to adjust the $p$-values, where the spatial pattern is encoded by the ordering of the locations, and the sparsity structure is encoded by a set of auxiliary covariates. We establish the theoretical properties of the proposed test, including the guaranteed power improvement over some state-of-the-art alternative tests, and the asymptotic false discovery control. We demonstrate the efficacy of the test through intensive simulations and two neuroimaging applications.

It is widely believed that a joint factor analysis of item responses and response time (RT) may yield more precise ability scores that are conventionally predicted from responses only. For this purpose, a simple-structure factor model is often preferred as it only requires specifying an additional measurement model for item-level RT while leaving the original item response theory (IRT) model for responses intact. The added speed factor indicated by item-level RT correlates with the ability factor in the IRT model, allowing RT data to carry additional information about respondents' ability. However, parametric simple-structure factor models are often restrictive and fit poorly to empirical data, which prompts under-confidence in the suitablity of a simple factor structure. In the present paper, we analyze the 2015 Programme for International Student Assessment (PISA) mathematics data using a semiparametric simple-structure model. We conclude that a simple factor structure attains a decent fit after further parametric assumptions in the measurement model are sufficiently relaxed. Furthermore, our semiparametric model implies that the association between latent ability and speed/slowness is strong in the population, but the form of association is nonlinear. It follows that scoring based on the fitted model can substantially improve the precision of ability scores.

The behavior of the leading singular values and vectors of noisy low-rank matrices is fundamental to many statistical and scientific problems. Theoretical understanding currently derives from asymptotic analysis under one of two regimes: (1) the classical regime, with a fixed number of rows and large number of columns, or vice versa, and (2) the proportional regime, with large numbers of rows and columns, proportional to one another. This paper is concerned with the disproportional regime, where the matrix is either ``tall and narrow'' or ``short and wide'': we study sequences of matrices of size $n \times m_n$ with aspect ratio $ n/m_n \rightarrow 0$ or $n/m_n \rightarrow \infty$ as $n \rightarrow \infty$. This regime has important ``big data'' applications. Theory derived here shows that the displacement of the empirical singular values and vectors from their noise-free counterparts and the associated phase transitions -- well-known under proportional growth asymptotics -- still occur in the disproportionate setting. They must be quantified, however, on a novel scale of measurement that adjusts with the changing aspect ratio as the matrix size increases. In this setting, the top singular vectors corresponding to the longer of the two matrix dimensions are asymptotically uncorrelated with the noise-free signal.

For exchangeable data, mixture models are an extremely useful tool for density estimation due to their attractive balance between smoothness and flexibility. When additional covariate information is present, mixture models can be extended for flexible regression by modeling the mixture parameters, namely the weights and atoms, as functions of the covariates. These types of models are interpretable and highly flexible, allowing non only the mean but the whole density of the response to change with the covariates, which is also known as density regression. This article reviews Bayesian covariate-dependent mixture models and highlights which data types can be accommodated by the different models along with the methodological and applied areas where they have been used. In addition to being highly flexible, these models are also numerous; we focus on nonparametric constructions and broadly organize them into three categories: 1) joint models of the responses and covariates, 2) conditional models with single-weights and covariate-dependent atoms, and 3) conditional models with covariate-dependent weights. The diversity and variety of the available models in the literature raises the question of how to choose among them for the application at hand. We attempt to shed light on this question through a careful analysis of the predictive equations for the conditional mean and density function as well as predictive comparisons in three simulated data examples.

In observational studies, unobserved confounding is a major barrier in isolating the average causal effect (ACE). In these scenarios, two main approaches are often used: confounder adjustment for causality (CAC) and instrumental variable analysis for causation (IVAC). Nevertheless, both are subject to untestable assumptions and, therefore, it may be unclear which assumption violation scenarios one method is superior in terms of mitigating inconsistency for the ACE. Although general guidelines exist, direct theoretical comparisons of the trade-offs between CAC and the IVAC assumptions are limited. Using ordinary least squares (OLS) for CAC and two-stage least squares (2SLS) for IVAC, we analytically compare the relative inconsistency for the ACE of each approach under a variety of assumption violation scenarios and discuss rules of thumb for practice. Additionally, a sensitivity framework is proposed to guide analysts in determining which approach may result in less inconsistency for estimating the ACE with a given dataset. We demonstrate our findings both through simulation and an application examining whether maternal stress during pregnancy affects a neonate's birthweight. The implications of our findings for causal inference practice are discussed, providing guidance for analysts for judging whether CAC or IVAC may be more appropriate for a given situation.

This note addresses the question of optimally estimating a linear functional of an object acquired through linear observations corrupted by random noise, where optimality pertains to a worst-case setting tied to a symmetric, convex, and closed model set containing the object. It complements the article "Statistical Estimation and Optimal Recovery" published in the Annals of Statistics in 1994. There, Donoho showed (among other things) that, for Gaussian noise, linear maps provide near-optimal estimation schemes relatively to a performance measure relevant in Statistical Estimation. Here, we advocate for a different performance measure arguably more relevant in Optimal Recovery. We show that, relatively to this new measure, linear maps still provide near-optimal estimation schemes even if the noise is merely log-concave. Our arguments, which make a connection to the deterministic noise situation and bypass properties specific to the Gaussian case, offer an alternative to parts of Donoho's proof.

Neural point estimators are neural networks that map data to parameter point estimates. They are fast, likelihood free and, due to their amortised nature, amenable to fast bootstrap-based uncertainty quantification. In this paper, we aim to increase the awareness of statisticians to this relatively new inferential tool, and to facilitate its adoption by providing user-friendly open-source software. We also give attention to the ubiquitous problem of making inference from replicated data, which we address in the neural setting using permutation-invariant neural networks. Through extensive simulation studies we show that these neural point estimators can quickly and optimally (in a Bayes sense) estimate parameters in weakly-identified and highly-parameterised models with relative ease. We demonstrate their applicability through an analysis of extreme sea-surface temperature in the Red Sea where, after training, we obtain parameter estimates and bootstrap-based confidence intervals from hundreds of spatial fields in a fraction of a second.

Quantile regression is increasingly encountered in modern big data applications due to its robustness and flexibility. We consider the scenario of learning the conditional quantiles of a specific target population when the available data may go beyond the target and be supplemented from other sources that possibly share similarities with the target. A crucial question is how to properly distinguish and utilize useful information from other sources to improve the quantile estimation and inference at the target. We develop transfer learning methods for high-dimensional quantile regression by detecting informative sources whose models are similar to the target and utilizing them to improve the target model. We show that under reasonable conditions, the detection of the informative sources based on sample splitting is consistent. Compared to the naive estimator with only the target data, the transfer learning estimator achieves a much lower error rate as a function of the sample sizes, the signal-to-noise ratios, and the similarity measures among the target and the source models. Extensive simulation studies demonstrate the superiority of our proposed approach. We apply our methods to tackle the problem of detecting hard-landing risk for flight safety and show the benefits and insights gained from transfer learning of three different types of airplanes: Boeing 737, Airbus A320, and Airbus A380.

北京阿比特科技有限公司