The Frank-Wolfe (FW) method is a popular approach for solving optimization problems with structured constraints that arise in machine learning applications. In recent years, stochastic versions of FW have gained popularity, motivated by large datasets for which the computation of the full gradient is prohibitively expensive. In this paper, we present two new variants of the FW algorithms for stochastic finite-sum minimization. Our algorithms have the best convergence guarantees of existing stochastic FW approaches for both convex and non-convex objective functions. Our methods do not have the issue of permanently collecting large batches, which is common to many stochastic projection-free approaches. Moreover, our second approach does not require either large batches or full deterministic gradients, which is a typical weakness of many techniques for finite-sum problems. The faster theoretical rates of our approaches are confirmed experimentally.
The proximal policy optimization (PPO) algorithm stands as one of the most prosperous methods in the field of reinforcement learning (RL). Despite its success, the theoretical understanding of PPO remains deficient. Specifically, it is unclear whether PPO or its optimistic variants can effectively solve linear Markov decision processes (MDPs), which are arguably the simplest models in RL with function approximation. To bridge this gap, we propose an optimistic variant of PPO for episodic adversarial linear MDPs with full-information feedback, and establish a $\tilde{\mathcal{O}}(d^{3/4}H^2K^{3/4})$ regret for it. Here $d$ is the ambient dimension of linear MDPs, $H$ is the length of each episode, and $K$ is the number of episodes. Compared with existing policy-based algorithms, we achieve the state-of-the-art regret bound in both stochastic linear MDPs and adversarial linear MDPs with full information. Additionally, our algorithm design features a novel multi-batched updating mechanism and the theoretical analysis utilizes a new covering number argument of value and policy classes, which might be of independent interest.
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning, but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality, and it outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
We consider the problem of continuous-time policy evaluation. This consists in learning through observations the value function associated with an uncontrolled continuous-time stochastic dynamic and a reward function. We propose two original variants of the well-known TD(0) method using vanishing time steps. One is model-free and the other is model-based. For both methods, we prove theoretical convergence rates that we subsequently verify through numerical simulations. Alternatively, those methods can be interpreted as novel reinforcement learning approaches for approximating solutions of linear PDEs (partial differential equations) or linear BSDEs (backward stochastic differential equations).
The shift from the understanding and prediction of processes to their optimization offers great benefits to businesses and other organizations. Precisely timed process interventions are the cornerstones of effective optimization. Prescriptive process monitoring (PresPM) is the sub-field of process mining that concentrates on process optimization. The emerging PresPM literature identifies state-of-the-art methods, causal inference (CI) and reinforcement learning (RL), without presenting a quantitative comparison. Most experiments are carried out using historical data, causing problems with the accuracy of the methods' evaluations and preempting online RL. Our contribution consists of experiments on timed process interventions with synthetic data that renders genuine online RL and the comparison to CI possible, and allows for an accurate evaluation of the results. Our experiments reveal that RL's policies outperform those from CI and are more robust at the same time. Indeed, the RL policies approach perfect policies. Unlike CI, the unaltered online RL approach can be applied to other, more generic PresPM problems such as next best activity recommendations. Nonetheless, CI has its merits in settings where online learning is not an option.
Sketching is one of the most fundamental tools in large-scale machine learning. It enables runtime and memory saving via randomly compressing the original large problem into lower dimensions. In this paper, we propose a novel sketching scheme for the first order method in large-scale distributed learning setting, such that the communication costs between distributed agents are saved while the convergence of the algorithms is still guaranteed. Given gradient information in a high dimension $d$, the agent passes the compressed information processed by a sketching matrix $R\in \mathbb{R}^{s\times d}$ with $s\ll d$, and the receiver de-compressed via the de-sketching matrix $R^\top$ to ``recover'' the information in original dimension. Using such a framework, we develop algorithms for federated learning with lower communication costs. However, such random sketching does not protect the privacy of local data directly. We show that the gradient leakage problem still exists after applying the sketching technique by presenting a specific gradient attack method. As a remedy, we prove rigorously that the algorithm will be differentially private by adding additional random noises in gradient information, which results in a both communication-efficient and differentially private first order approach for federated learning tasks. Our sketching scheme can be further generalized to other learning settings and might be of independent interest itself.
The numerical evaluation of statistics plays a crucial role in statistical physics and its applied fields. It is possible to evaluate the statistics for a stochastic differential equation with Gaussian white noise via the corresponding backward Kolmogorov equation. The important notice is that there is no need to obtain the solution of the backward Kolmogorov equation on the whole domain; it is enough to evaluate a value of the solution at a certain point that corresponds to the initial coordinate for the stochastic differential equation. For this aim, an algorithm based on combinatorics has recently been developed. In this paper, we discuss a higher-order approximation of resolvent, and an algorithm based on a second-order approximation is proposed. The proposed algorithm shows a second-order convergence. Furthermore, the convergence property of the naive algorithms naturally leads to extrapolation methods; they work well to calculate a more accurate value with fewer computational costs. The proposed method is demonstrated with the Ornstein-Uhlenbeck process and the noisy van der Pol system.
The g-formula can be used to estimate the treatment effect while accounting for confounding bias in observational studies. With regard to time-to-event endpoints, possibly subject to competing risks, the construction of valid pointwise confidence intervals and time-simultaneous confidence bands for the causal risk difference is complicated, however. A convenient solution is to approximate the asymptotic distribution of the corresponding stochastic process by means of resampling approaches. In this paper, we consider three different resampling methods, namely the classical nonparametric bootstrap, the influence function equipped with a resampling approach as well as a martingale-based bootstrap version. We set up a simulation study to compare the accuracy of the different techniques, which reveals that the wild bootstrap should in general be preferred if the sample size is moderate and sufficient data on the event of interest have been accrued. For illustration, the three resampling methods are applied to data on the long-term survival in patients with early-stage Hodgkin's disease.
This paper is concerned with function reconstruction from samples. The sampling points used in several approaches are (1) structured points connected with fast algorithms or (2) unstructured points coming from, e.g., an initial random draw to achieve an improved information complexity. We connect both approaches and propose a subsampling of structured points in an offline step. In particular, we start with structured quadrature points (QMC), which provide stable $L_2$ reconstruction properties. The subsampling procedure consists of a computationally inexpensive random step followed by a deterministic procedure to further reduce the number of points while keeping its information. In these points functions (belonging to a RKHS of bounded functions) will be sampled and reconstructed from whilst achieving state of the art error decay. Our method is dimension-independent and is applicable as soon as we know some initial quadrature points. We apply our general findings on the $d$-dimensional torus to subsample rank-1 lattices, where it is known that full rank-1 lattices lose half the optimal order of convergence (expressed in terms of the size of the lattice). In contrast to that, our subsampled version regains the optimal rate since many of the lattice points are not needed. Moreover, we utilize fast and memory efficient Fourier algorithms in order to compute the approximation. Numerical experiments in several dimensions support our findings.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics, for decades. Nowadays, estimating causal effect from observational data has become an appealing research direction owing to the large amount of available data and low budget requirement, compared with randomized controlled trials. Embraced with the rapidly developed machine learning area, various causal effect estimation methods for observational data have sprung up. In this survey, we provide a comprehensive review of causal inference methods under the potential outcome framework, one of the well known causal inference framework. The methods are divided into two categories depending on whether they require all three assumptions of the potential outcome framework or not. For each category, both the traditional statistical methods and the recent machine learning enhanced methods are discussed and compared. The plausible applications of these methods are also presented, including the applications in advertising, recommendation, medicine and so on. Moreover, the commonly used benchmark datasets as well as the open-source codes are also summarized, which facilitate researchers and practitioners to explore, evaluate and apply the causal inference methods.