亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The numerical evaluation of statistics plays a crucial role in statistical physics and its applied fields. It is possible to evaluate the statistics for a stochastic differential equation with Gaussian white noise via the corresponding backward Kolmogorov equation. The important notice is that there is no need to obtain the solution of the backward Kolmogorov equation on the whole domain; it is enough to evaluate a value of the solution at a certain point that corresponds to the initial coordinate for the stochastic differential equation. For this aim, an algorithm based on combinatorics has recently been developed. In this paper, we discuss a higher-order approximation of resolvent, and an algorithm based on a second-order approximation is proposed. The proposed algorithm shows a second-order convergence. Furthermore, the convergence property of the naive algorithms naturally leads to extrapolation methods; they work well to calculate a more accurate value with fewer computational costs. The proposed method is demonstrated with the Ornstein-Uhlenbeck process and the noisy van der Pol system.

相關內容

Monte Carlo methods represent a cornerstone of computer science. They allow to sample high dimensional distribution functions in an efficient way. In this paper we consider the extension of Automatic Differentiation (AD) techniques to Monte Carlo process, addressing the problem of obtaining derivatives (and in general, the Taylor series) of expectation values. Borrowing ideas from the lattice field theory community, we examine two approaches. One is based on reweighting while the other represents an extension of the Hamiltonian approach typically used by the Hybrid Monte Carlo (HMC) and similar algorithms. We show that the Hamiltonian approach can be understood as a change of variables of the reweighting approach, resulting in much reduced variances of the coefficients of the Taylor series. This work opens the door to find other variance reduction techniques for derivatives of expectation values.

A class of averaging block nonlinear Kaczmarz methods is developed for the solution of the nonlinear system of equations. The convergence theory of the proposed method is established under suitable assumptions and the upper bounds of the convergence rate for the proposed method with both constant stepsize and adaptive stepsize are derived. Numerical experiments are presented to verify the efficiency of the proposed method, which outperforms the existing nonlinear Kaczmarz methods in terms of the number of iteration steps and computational costs.

We use a combination of unsupervised clustering and sparsity-promoting inference algorithms to learn locally dominant force balances that explain macroscopic pattern formation in self-organized active particle systems. The self-organized emergence of macroscopic patterns from microscopic interactions between self-propelled particles can be widely observed nature. Although hydrodynamic theories help us better understand the physical basis of this phenomenon, identifying a sufficient set of local interactions that shape, regulate, and sustain self-organized structures in active particle systems remains challenging. We investigate a classic hydrodynamic model of self-propelled particles that produces a wide variety of patterns, like asters and moving density bands. Our data-driven analysis shows that propagating bands are formed by local alignment interactions driven by density gradients, while steady-state asters are shaped by a mechanism of splay-induced negative compressibility arising from strong particle interactions. Our method also reveals analogous physical principles of pattern formation in a system where the speed of the particle is influenced by local density. This demonstrates the ability of our method to reveal physical commonalities across models. The physical mechanisms inferred from the data are in excellent agreement with analytical scaling arguments and experimental observations.

We consider solving partial differential equations (PDEs) with Fourier neural operators (FNOs), which operate in the frequency domain. Since the laws of physics do not depend on the coordinate system used to describe them, it is desirable to encode such symmetries in the neural operator architecture for better performance and easier learning. While encoding symmetries in the physical domain using group theory has been studied extensively, how to capture symmetries in the frequency domain is under-explored. In this work, we extend group convolutions to the frequency domain and design Fourier layers that are equivariant to rotations, translations, and reflections by leveraging the equivariance property of the Fourier transform. The resulting $G$-FNO architecture generalizes well across input resolutions and performs well in settings with varying levels of symmetry. Our code is publicly available as part of the AIRS library (//github.com/divelab/AIRS).

Recent tropical cyclones, e.g., Hurricane Harvey (2017), have lead to significant rainfall and resulting runoff with accompanying flooding. When the runoff interacts with storm surge, the resulting floods can be greatly amplified and lead to effects that cannot be modeled by simple superposition of its distinctive sources. In an effort to develop accurate numerical simulations of runoff, surge, and compounding floods, we develop a local discontinuous Galerkin method for modified shallow water equations. In this modification, nonzero sources to the continuity equation are included to incorporate rainfall into the model using parametric rainfall models from literature as well as hindcast data. The discontinuous Galerkin spatial discretization is accompanied with a strong stability preserving explicit Runge Kutta time integrator. Hence, temporal stability is ensured through the CFL condition and we exploit the embarrassingly parallel nature of the developed method using MPI parallelization. We demonstrate the capabilities of the developed method though a sequence of physically relevant numerical tests, including small scale test cases based on laboratory measurements and large scale experiments with Hurricane Harvey in the Gulf of Mexico. The results highlight the conservation properties and robustness of the developed method and show the potential of compound flood modeling using our approach.

We propose two approaches, based on Riemannian optimization, for computing a stochastic approximation of the $p$th root of a stochastic matrix $A$. In the first approach, the approximation is found in the Riemannian manifold of positive stochastic matrices. In the second approach, we introduce the Riemannian manifold of positive stochastic matrices sharing with $A$ the Perron eigenvector and we compute the approximation of the $p$th root of $A$ in such a manifold. This way, differently from the available methods based on constrained optimization, $A$ and its $p$th root approximation share the Perron eigenvector. Such a property is relevant, from a modelling point of view, in the embedding problem for Markov chains. The extended numerical experimentation shows that, in the first approach, the Riemannian optimization methods are generally faster and more accurate than the available methods based on constrained optimization. In the second approach, even though the stochastic approximation of the $p$th root is found in a smaller set, the approximation is generally more accurate than the one obtained by standard constrained optimization.

The Information Bottleneck (IB) is a method of lossy compression of relevant information. Its rate-distortion (RD) curve describes the fundamental tradeoff between input compression and the preservation of relevant information embedded in the input. However, it conceals the underlying dynamics of optimal input encodings. We argue that these typically follow a piecewise smooth trajectory when input information is being compressed, as recently shown in RD. These smooth dynamics are interrupted when an optimal encoding changes qualitatively, at a bifurcation. By leveraging the IB's intimate relations with RD, we provide substantial insights into its solution structure, highlighting caveats in its finite-dimensional treatments. Sub-optimal solutions are seen to collide or exchange optimality at its bifurcations. Despite the acceptance of the IB and its applications, there are surprisingly few techniques to solve it numerically, even for finite problems whose distribution is known. We derive anew the IB's first-order Ordinary Differential Equation, which describes the dynamics underlying its optimal tradeoff curve. To exploit these dynamics, we not only detect IB bifurcations but also identify their type in order to handle them accordingly. Rather than approaching the IB's optimal curve from sub-optimal directions, the latter allows us to follow a solution's trajectory along the optimal curve under mild assumptions. We thereby translate an understanding of IB bifurcations into a surprisingly accurate numerical algorithm.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Classic algorithms and machine learning systems like neural networks are both abundant in everyday life. While classic computer science algorithms are suitable for precise execution of exactly defined tasks such as finding the shortest path in a large graph, neural networks allow learning from data to predict the most likely answer in more complex tasks such as image classification, which cannot be reduced to an exact algorithm. To get the best of both worlds, this thesis explores combining both concepts leading to more robust, better performing, more interpretable, more computationally efficient, and more data efficient architectures. The thesis formalizes the idea of algorithmic supervision, which allows a neural network to learn from or in conjunction with an algorithm. When integrating an algorithm into a neural architecture, it is important that the algorithm is differentiable such that the architecture can be trained end-to-end and gradients can be propagated back through the algorithm in a meaningful way. To make algorithms differentiable, this thesis proposes a general method for continuously relaxing algorithms by perturbing variables and approximating the expectation value in closed form, i.e., without sampling. In addition, this thesis proposes differentiable algorithms, such as differentiable sorting networks, differentiable renderers, and differentiable logic gate networks. Finally, this thesis presents alternative training strategies for learning with algorithms.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

北京阿比特科技有限公司