亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A class of averaging block nonlinear Kaczmarz methods is developed for the solution of the nonlinear system of equations. The convergence theory of the proposed method is established under suitable assumptions and the upper bounds of the convergence rate for the proposed method with both constant stepsize and adaptive stepsize are derived. Numerical experiments are presented to verify the efficiency of the proposed method, which outperforms the existing nonlinear Kaczmarz methods in terms of the number of iteration steps and computational costs.

相關內容

Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.

Parametric mathematical models such as parameterizations of partial differential equations with random coefficients have received a lot of attention within the field of uncertainty quantification. The model uncertainties are often represented via a series expansion in terms of the parametric variables. In practice, this series expansion needs to be truncated to a finite number of terms, introducing a dimension truncation error to the numerical simulation of a parametric mathematical model. There have been several studies of the dimension truncation error corresponding to different models of the input random field in recent years, but many of these analyses have been carried out within the context of numerical integration. In this paper, we study the $L^2$ dimension truncation error of the parametric model problem. Estimates of this kind arise in the assessment of the dimension truncation error for function approximation in high dimensions. In addition, we show that the dimension truncation error rate is invariant with respect to certain transformations of the parametric variables. Numerical results are presented which showcase the sharpness of the theoretical results.

In this paper, numerical methods based on Vieta-Lucas wavelets are proposed for solving a class of singular differential equations. The operational matrix of the derivative for Vieta-Lucas wavelets is derived. It is employed to reduce the differential equations into the system of algebraic equations by applying the ideas of the collocation scheme, Tau scheme, and Galerkin scheme respectively. Furthermore, the convergence analysis and error estimates for Vieta-Lucas wavelets are performed. In the numerical section, the comparative analysis is presented among the different versions of the proposed Vieta-Lucas wavelet methods, and the accuracy of the approaches is evaluated by computing the errors and comparing them to the existing findings.

Stabilizer-free $P_k$ virtual elements are constructed on polygonal and polyhedral meshes. Here the interpolating space is the space of continuous $P_k$ polynomials on a triangular-subdivision of each polygon, or a tetrahedral-subdivision of each polyhedron. With such an accurate and proper interpolation, the stabilizer of the virtual elements is eliminated while the system is kept positive-definite. We show that the stabilizer-free virtual elements converge at the optimal order in 2D and 3D. Numerical examples are computed, validating the theory.

The problem of optimal recovering high-order mixed derivatives of bivariate functions with finite smoothness is studied. On the basis of the truncation method, an algorithm for numerical differentiation is constructed, which is order-optimal both in the sense of accuracy and in terms of the amount of involved Galerkin information.

Anomalous diffusion in the presence or absence of an external force field is often modelled in terms of the fractional evolution equations, which can involve the hyper-singular source term. For this case, conventional time stepping methods may exhibit a severe order reduction. Although a second-order numerical algorithm is provided for the subdiffusion model with a simple hyper-singular source term $t^{\mu}$, $-2<\mu<-1$ in [arXiv:2207.08447], the convergence analysis remain to be proved. To fill in these gaps, we present a simple and robust smoothing method for the hyper-singular source term, where the Hadamard finite-part integral is introduced. This method is based on the smoothing/ID$m$-BDF$k$ method proposed by the authors [Shi and Chen, SIAM J. Numer. Anal., to appear] for subdiffusion equation with a weakly singular source term. We prove that the $k$th-order convergence rate can be restored for the diffusion-wave case $\gamma \in (1,2)$ and sketch the proof for the subdiffusion case $\gamma \in (0,1)$, even if the source term is hyper-singular and the initial data is not compatible. Numerical experiments are provided to confirm the theoretical results.

A generalization of the Newton-based matrix splitting iteration method (GNMS) for solving the generalized absolute value equations (GAVEs) is proposed. Under mild conditions, the GNMS method converges to the unique solution of the GAVEs. Moreover, we can obtain a few weaker convergence conditions for some existing methods. Numerical results verify the effectiveness of the proposed method.

In highly diffusion regimes when the mean free path $\varepsilon$ tends to zero, the radiative transfer equation has an asymptotic behavior which is governed by a diffusion equation and the corresponding boundary condition. Generally, a numerical scheme for solving this problem has the truncation error containing an $\varepsilon^{-1}$ contribution, that leads to a nonuniform convergence for small $\varepsilon$. Such phenomenons require high resolutions of discretizations, which degrades the performance of the numerical scheme in the diffusion limit. In this paper, we first provide a--priori estimates for the scaled spherical harmonic ($P_N$) radiative transfer equation. Then we present an error analysis for the spherical harmonic discontinuous Galerkin (DG) method of the scaled radiative transfer equation showing that, under some mild assumptions, its solutions converge uniformly in $\varepsilon$ to the solution of the scaled radiative transfer equation. We further present an optimal convergence result for the DG method with the upwind flux on Cartesian grids. Error estimates of $\left(1+\mathcal{O}(\varepsilon)\right)h^{k+1}$ (where $h$ is the maximum element length) are obtained when tensor product polynomials of degree at most $k$ are used.

Solving multiphysics-based inverse problems for geological carbon storage monitoring can be challenging when multimodal time-lapse data are expensive to collect and costly to simulate numerically. We overcome these challenges by combining computationally cheap learned surrogates with learned constraints. Not only does this combination lead to vastly improved inversions for the important fluid-flow property, permeability, it also provides a natural platform for inverting multimodal data including well measurements and active-source time-lapse seismic data. By adding a learned constraint, we arrive at a computationally feasible inversion approach that remains accurate. This is accomplished by including a trained deep neural network, known as a normalizing flow, which forces the model iterates to remain in-distribution, thereby safeguarding the accuracy of trained Fourier neural operators that act as surrogates for the computationally expensive multiphase flow simulations involving partial differential equation solves. By means of carefully selected experiments, centered around the problem of geological carbon storage, we demonstrate the efficacy of the proposed constrained optimization method on two different data modalities, namely time-lapse well and time-lapse seismic data. While permeability inversions from both these two modalities have their pluses and minuses, their joint inversion benefits from either, yielding valuable superior permeability inversions and CO2 plume predictions near, and far away, from the monitoring wells.

Transition amplitudes and transition probabilities are relevant to many areas of physics simulation, including the calculation of response properties and correlation functions. These quantities can also be related to solving linear systems of equations. Here we present three related algorithms for calculating transition probabilities. First, we extend a previously published short-depth algorithm, allowing for the two input states to be non-orthogonal. Building on this first procedure, we then derive a higher-depth algorithm based on Trotterization and Richardson extrapolation that requires fewer circuit evaluations. Third, we introduce a tunable algorithm that allows for trading off circuit depth and measurement complexity, yielding an algorithm that can be tailored to specific hardware characteristics. Finally, we implement proof-of-principle numerics for models in physics and chemistry and for a subroutine in variational quantum linear solving (VQLS). The primary benefits of our approaches are that (a) arbitrary non-orthogonal states may now be used with small increases in quantum resources, (b) we (like another recently proposed method) entirely avoid subroutines such as the Hadamard test that may require three-qubit gates to be decomposed, and (c) in some cases fewer quantum circuit evaluations are required as compared to the previous state-of-the-art in NISQ algorithms for transition probabilities.

北京阿比特科技有限公司