Stabilizer-free $P_k$ virtual elements are constructed on polygonal and polyhedral meshes. Here the interpolating space is the space of continuous $P_k$ polynomials on a triangular-subdivision of each polygon, or a tetrahedral-subdivision of each polyhedron. With such an accurate and proper interpolation, the stabilizer of the virtual elements is eliminated while the system is kept positive-definite. We show that the stabilizer-free virtual elements converge at the optimal order in 2D and 3D. Numerical examples are computed, validating the theory.
The contraction$^*$-depth is the matroid depth parameter analogous to tree-depth of graphs. We establish the matroid analogue of the classical graph theory result asserting that the tree-depth of a graph $G$ is the minimum height of a rooted forest whose closure contains $G$ by proving the following for every matroid $M$ (except the trivial case when $M$ consists of loops and bridges only): the contraction$^*$-depth of $M$ plus one is equal to the minimum contraction-depth of a matroid containing $M$ as a restriction.
Quantifying the difference between two probability density functions, $p$ and $q$, using available data, is a fundamental problem in Statistics and Machine Learning. A usual approach for addressing this problem is the likelihood-ratio estimation (LRE) between $p$ and $q$, which -- to our best knowledge -- has been investigated mainly for the offline case. This paper contributes by introducing a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t \sim p, x'_t \sim q)$ are observed over time. The non-parametric nature of our approach has the advantage of being agnostic to the forms of $p$ and $q$. Moreover, we capitalize on the recent advances in Kernel Methods and functional minimization to develop an estimator that can be efficiently updated online. We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.
Lyapunov functions play a vital role in the context of control theory for nonlinear dynamical systems. Besides its classical use for stability analysis, Lyapunov functions also arise in iterative schemes for computing optimal feedback laws such as the well-known policy iteration. In this manuscript, the focus is on the Lyapunov function of a nonlinear autonomous finite-dimensional dynamical system which will be rewritten as an infinite-dimensional linear system using the Koopman or composition operator. Since this infinite-dimensional system has the structure of a weak-* continuous semigroup, in a specially weighted $\mathrm{L}^p$-space one can establish a connection between the solution of an operator Lyapunov equation and the desired Lyapunov function. It will be shown that the solution to this operator equation attains a rapid eigenvalue decay which justifies finite rank approximations with numerical methods. The potential benefit for numerical computations will be demonstrated with two short examples.
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables, which is a component-based approach aiming to study the relationships between several sets of variables. Sparse generalized canonical correlation analysis (SGCCA) (proposed in Tenenhaus et al. (2014)), combines RGCCA with an `1-penalty, in which blocks are not necessarily fully connected, makes SGCCA a flexible method for analyzing a wide variety of practical problems, such as biology, chemistry, sensory analysis, marketing, food research, etc. In Tenenhaus et al. (2014), an iterative algorithm for SGCCA was designed based on the solution to the subproblem (LM-P1 for short) of maximizing a linear function on the intersection of an `1-norm ball and a unit `2-norm sphere proposed in Witten et al. (2009). However, the solution to the subproblem (LM-P1) proposed in Witten et al. (2009) is not correct, which may become the reason that the iterative algorithm for SGCCA is slow and not always convergent. For this, we first characterize the solution to the subproblem LM-P1, and the subproblems LM-P2 and LM-P3, which maximize a linear function on the intersection of an `1-norm sphere and a unit `2-norm sphere, and an `1-norm ball and a unit `2-norm sphere, respectively. Then we provide more efficient block coordinate descent (BCD) algorithms for SGCCA and its two variants, called SGCCA-BCD1, SGCCA-BCD2 and SGCCA-BCD3, corresponding to the subproblems LM-P1, LM-P2 and LM-P3, respectively, prove that they all globally converge to their stationary points. We further propose gradient projected (GP) methods for SGCCA and its two variants when using the Horst scheme, called SGCCA-GP1, SGCCA-GP2 and SGCCA-GP3, corresponding to the subproblems LM-P1, LM-P2 and LM-P3, respectively, and prove that they all
We propose to approximate a (possibly discontinuous) multivariate function f (x) on a compact set by the partial minimizer arg miny p(x, y) of an appropriate polynomial p whose construction can be cast in a univariate sum of squares (SOS) framework, resulting in a highly structured convex semidefinite program. In a number of non-trivial cases (e.g. when f is a piecewise polynomial) we prove that the approximation is exact with a low-degree polynomial p. Our approach has three distinguishing features: (i) It is mesh-free and does not require the knowledge of the discontinuity locations. (ii) It is model-free in the sense that we only assume that the function to be approximated is available through samples (point evaluations). (iii) The size of the semidefinite program is independent of the ambient dimension and depends linearly on the number of samples. We also analyze the sample complexity of the approach, proving a generalization error bound in a probabilistic setting. This allows for a comparison with machine learning approaches.
Two Latin squares of order $n$ are $r$-orthogonal if, when superimposed, there are exactly $r$ distinct ordered pairs. The spectrum of all values of $r$ for Latin squares of order $n$ is known. A Latin square $A$ of order $n$ is $r$-self-orthogonal if $A$ and its transpose are $r$-orthogonal. The spectrum of all values of $r$ is known for all orders $n\ne 14$. We develop randomized algorithms for computing pairs of $r$-orthogonal Latin squares of order $n$ and algorithms for computing $r$-self-orthogonal Latin squares of order $n$.
Power functions with low $c$-differential uniformity have been widely studied not only because of their strong resistance to multiplicative differential attacks, but also low implementation cost in hardware. Furthermore, the $c$-differential spectrum of a function gives a more precise characterization of its $c$-differential properties. Let $f(x)=x^{\frac{p^n+3}{2}}$ be a power function over the finite field $\mathbb{F}_{p^{n}}$, where $p\neq3$ is an odd prime and $n$ is a positive integer. In this paper, for all primes $p\neq3$, by investigating certain character sums with regard to elliptic curves and computing the number of solutions of a system of equations over $\mathbb{F}_{p^{n}}$, we determine explicitly the $(-1)$-differential spectrum of $f$ with a unified approach. We show that if $p^n \equiv 3 \pmod 4$, then $f$ is a differentially $(-1,3)$-uniform function except for $p^n\in\{7,19,23\}$ where $f$ is an APcN function, and if $p^n \equiv 1 \pmod 4$, the $(-1)$-differential uniformity of $f$ is equal to $4$. In addition, an upper bound of the $c$-differential uniformity of $f$ is also given.
The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reasonable may lead to significantly different conclusions. We develop a computational approach to better understand the impact of the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the hyperparameters defining the prior. This, however, is a challenging problem--a naive double loop sampling approach would require running a prohibitive number of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making such a sensitivity analysis practical through (i) a judicious combination of efficient surrogate models and (ii) a tailored importance sampling method. In particular, we can perform accurate GSA of posterior prediction statistics with respect to prior hyperparameters without having to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model.
We introduce a relaxation for homomorphism problems that combines semidefinite programming with linear Diophantine equations, and propose a framework for the analysis of its power based on the spectral theory of association schemes. We use this framework to establish an unconditional lower bound against the semidefinite programming + linear equations model, by showing that the relaxation does not solve the approximate graph homomorphism problem and thus, in particular, the approximate graph colouring problem.