亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

There has been growing interest in high-order tensor methods for nonconvex optimization, with adaptive regularization, as they possess better/optimal worst-case evaluation complexity globally and faster convergence asymptotically. These algorithms crucially rely on repeatedly minimizing nonconvex multivariate Taylor-based polynomial sub-problems, at least locally. Finding efficient techniques for the solution of these sub-problems, beyond the second-order case, has been an open question. This paper proposes a second-order method, Quadratic Quartic Regularisation (QQR), for efficiently minimizing nonconvex quartically-regularized cubic polynomials, such as the AR$p$ sub-problem [3] with $p=3$. Inspired by [35], QQR approximates the third-order tensor term by a linear combination of quadratic and quartic terms, yielding (possibly nonconvex) local models that are solvable to global optimality. In order to achieve accuracy $\epsilon$ in the first-order criticality of the sub-problem, we show that the error in the QQR method decreases either linearly or by at least $\mathcal{O}(\epsilon^{4/3})$ for locally convex iterations, while in the sufficiently nonconvex case, by at least $\mathcal{O}(\epsilon)$; thus improving, on these types of iterations, the general cubic-regularization bound. Preliminary numerical experiments indicate that two QQR variants perform competitively with state-of-the-art approaches such as ARC (also known as AR$p$ with $p=2$), achieving either a lower objective value or iteration counts.

相關內容

In clinical trials of longitudinal continuous outcomes, reference based imputation (RBI) has commonly been applied to handle missing outcome data in settings where the estimand incorporates the effects of intercurrent events, e.g. treatment discontinuation. RBI was originally developed in the multiple imputation framework, however recently conditional mean imputation (CMI) combined with the jackknife estimator of the standard error was proposed as a way to obtain deterministic treatment effect estimates and correct frequentist inference. For both multiple and CMI, a mixed model for repeated measures (MMRM) is often used for the imputation model, but this can be computationally intensive to fit to multiple data sets (e.g. the jackknife samples) and lead to convergence issues with complex MMRM models with many parameters. Therefore, a step-wise approach based on sequential linear regression (SLR) of the outcomes at each visit was developed for the imputation model in the multiple imputation framework, but similar developments in the CMI framework are lacking. In this article, we fill this gap in the literature by proposing a SLR approach to implement RBI in the CMI framework, and justify its validity using theoretical results and simulations. We also illustrate our proposal on a real data application.

Compliant mechanisms actuated by pneumatic loads are receiving increasing attention due to their direct applicability as soft robots that perform tasks using their flexible bodies. Using multiple materials to build them can further improve their performance and efficiency. Due to developments in additive manufacturing, the fabrication of multi-material soft robots is becoming a real possibility. To exploit this opportunity, there is a need for a dedicated design approach. This paper offers a systematic approach to developing such mechanisms using topology optimization. The extended SIMP scheme is employed for multi-material modeling. The design-dependent nature of the pressure load is modeled using the Darcy law with a volumetric drainage term. Flow coefficient of each element is interpolated using a smoothed Heaviside function. The obtained pressure field is converted to consistent nodal loads. The adjoint-variable approach is employed to determine the sensitivities. A robust formulation is employed, wherein a min-max optimization problem is formulated using the output displacements of the eroded and blueprint designs. Volume constraints are applied to the blueprint design, whereas the strain energy constraint is formulated with respect to the eroded design. The efficacy and success of the approach are demonstrated by designing pneumatically actuated multi-material gripper and contractor mechanisms. A numerical study confirms that multiple-material mechanisms perform relatively better than their single-material counterparts.

The accuracy of solving partial differential equations (PDEs) on coarse grids is greatly affected by the choice of discretization schemes. In this work, we propose to learn time integration schemes based on neural networks which satisfy three distinct sets of mathematical constraints, i.e., unconstrained, semi-constrained with the root condition, and fully-constrained with both root and consistency conditions. We focus on the learning of 3-step linear multistep methods, which we subsequently applied to solve three model PDEs, i.e., the one-dimensional heat equation, the one-dimensional wave equation, and the one-dimensional Burgers' equation. The results show that the prediction error of the learned fully-constrained scheme is close to that of the Runge-Kutta method and Adams-Bashforth method. Compared to the traditional methods, the learned unconstrained and semi-constrained schemes significantly reduce the prediction error on coarse grids. On a grid that is 4 times coarser than the reference grid, the mean square error shows a reduction of up to an order of magnitude for some of the heat equation cases, and a substantial improvement in phase prediction for the wave equation. On a 32 times coarser grid, the mean square error for the Burgers' equation can be reduced by up to 35% to 40%.

Goal-conditioned rearrangement of deformable objects (e.g. straightening a rope and folding a cloth) is one of the most common deformable manipulation tasks, where the robot needs to rearrange a deformable object into a prescribed goal configuration with only visual observations. These tasks are typically confronted with two main challenges: the high dimensionality of deformable configuration space and the underlying complexity, nonlinearity and uncertainty inherent in deformable dynamics. To address these challenges, we propose a novel representation strategy that can efficiently model the deformable object states with a set of keypoints and their interactions. We further propose local-graph neural network (GNN), a light local GNN learning to jointly model the deformable rearrangement dynamics and infer the optimal manipulation actions (e.g. pick and place) by constructing and updating two dynamic graphs. Both simulated and real experiments have been conducted to demonstrate that the proposed dynamic graph representation shows superior expressiveness in modeling deformable rearrangement dynamics. Our method reaches much higher success rates on a variety of deformable rearrangement tasks (96.3% on average) than state-of-the-art method in simulation experiments. Besides, our method is much more lighter and has a 60% shorter inference time than state-of-the-art methods. We also demonstrate that our method performs well in the multi-task learning scenario and can be transferred to real-world applications with an average success rate of 95% by solely fine tuning a keypoint detector.

This work addresses the approximation of the mean curvature flow of thin structures for which classical phase field methods are not suitable. By thin structures we mean either structures of higher codimension, typically filaments, or surfaces (including non orientables surfaces) that are not boundaries of a set. We propose a novel approach which consists in plugging into the classical Allen--Cahn equation a penalization term localized around the skeleton of the evolving set. This ensures that a minimal thickness is preserved during the evolution process. The numerical efficacy of our approach is illustrated with accurate approximations of the evolution by mean curvature flow of filament structures. Furthermore, we show the seamless adaptability of our approach to compute numerical approximations of solutions to the Steiner and Plateau problems in three dimensions.

Genomics methods have uncovered patterns in a range of biological systems, but obscure important aspects of cell behavior: the shape, relative locations of, movement of, and interactions between cells in space. Spatial technologies that collect genomic or epigenomic data while preserving spatial information have begun to overcome these limitations. These new data promise a deeper understanding of the factors that affect cellular behavior, and in particular the ability to directly test existing theories about cell state and variation in the context of morphology, location, motility, and signaling that could not be tested before. Rapid advancements in resolution, ease-of-use, and scale of spatial genomics technologies to address these questions also require an updated toolkit of statistical methods with which to interrogate these data. We present four open biological questions that can now be answered using spatial genomics data paired with methods for analysis. We outline spatial data modalities for each that may yield specific insight, discuss how conflicting theories may be tested by comparing the data to conceptual models of biological behavior, and highlight statistical and machine learning-based tools that may prove particularly helpful to recover biological insight.

Complexity is a fundamental concept underlying statistical learning theory that aims to inform generalization performance. Parameter count, while successful in low-dimensional settings, is not well-justified for overparameterized settings when the number of parameters is more than the number of training samples. We revisit complexity measures based on Rissanen's principle of minimum description length (MDL) and define a novel MDL-based complexity (MDL-COMP) that remains valid for overparameterized models. MDL-COMP is defined via an optimality criterion over the encodings induced by a good Ridge estimator class. We provide an extensive theoretical characterization of MDL-COMP for linear models and kernel methods and show that it is not just a function of parameter count, but rather a function of the singular values of the design or the kernel matrix and the signal-to-noise ratio. For a linear model with $n$ observations, $d$ parameters, and i.i.d. Gaussian predictors, MDL-COMP scales linearly with $d$ when $d<n$, but the scaling is exponentially smaller -- $\log d$ for $d>n$. For kernel methods, we show that MDL-COMP informs minimax in-sample error, and can decrease as the dimensionality of the input increases. We also prove that MDL-COMP upper bounds the in-sample mean squared error (MSE). Via an array of simulations and real-data experiments, we show that a data-driven Prac-MDL-COMP informs hyper-parameter tuning for optimizing test MSE with ridge regression in limited data settings, sometimes improving upon cross-validation and (always) saving computational costs. Finally, our findings also suggest that the recently observed double decent phenomenons in overparameterized models might be a consequence of the choice of non-ideal estimators.

A key challenge when trying to understand innovation is that it is a dynamic, ongoing process, which can be highly contingent on ephemeral factors such as culture, economics, or luck. This means that any analysis of the real-world process must necessarily be historical - and thus probably too late to be most useful - but also cannot be sure what the properties of the web of connections between innovations is or was. Here I try to address this by designing and generating a set of synthetic innovation web "dictionaries" that can be used to host sampled innovation timelines, probe the overall statistics and behaviours of these processes, and determine the degree of their reliance on the structure or generating algorithm. Thus, inspired by the work of Fink, Reeves, Palma and Farr (2017) on innovation in language, gastronomy, and technology, I study how new symbol discovery manifests itself in terms of additional "word" vocabulary being available from dictionaries generated from a finite number of symbols. Several distinct dictionary generation models are investigated using numerical simulation, with emphasis on the scaling of knowledge as dictionary generators and parameters are varied, and the role of which order the symbols are discovered in.

Recurrent neural networks (RNNs) have yielded promising results for both recognizing objects in challenging conditions and modeling aspects of primate vision. However, the representational dynamics of recurrent computations remain poorly understood, especially in large-scale visual models. Here, we studied such dynamics in RNNs trained for object classification on MiniEcoset, a novel subset of ecoset. We report two main insights. First, upon inference, representations continued to evolve after correct classification, suggesting a lack of the notion of being ``done with classification''. Second, focusing on ``readout zones'' as a way to characterize the activation trajectories, we observe that misclassified representations exhibit activation patterns with lower L2 norm, and are positioned more peripherally in the readout zones. Such arrangements help the misclassified representations move into the correct zones as time progresses. Our findings generalize to networks with lateral and top-down connections, and include both additive and multiplicative interactions with the bottom-up sweep. The results therefore contribute to a general understanding of RNN dynamics in naturalistic tasks. We hope that the analysis framework will aid future investigations of other types of RNNs, including understanding of representational dynamics in primate vision.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司