亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent one-stage transformer-based methods achieve notable gains in the Human-object Interaction Detection (HOI) task by leveraging the detection of DETR. However, the current methods redirect the detection target of the object decoder, and the box target is not explicitly separated from the query embeddings, which leads to long and hard training. Furthermore, matching the predicted HOI instances with the ground-truth is more challenging than object detection, simply adapting training strategies from the object detection makes the training more difficult. To clear the ambiguity between human and object detection and share the prediction burden, we propose a novel one-stage framework (SOV), which consists of a subject decoder, an object decoder, and a verb decoder. Moreover, we propose a novel Specific Target Guided (STG) DeNoising strategy, which leverages learnable object and verb label embeddings to guide the training and accelerates the training convergence. In addition, for the inference part, the label-specific information is directly fed into the decoders by initializing the query embeddings from the learnable label embeddings. Without additional features or prior language knowledge, our method (SOV-STG) achieves higher accuracy than the state-of-the-art method in one-third of training epochs. The code is available at \url{//github.com/cjw2021/SOV-STG}.

相關內容

This paper proposes a new method for determining the simulation parameters of the Jiles-Atherton Model used to simulate the first magnetization curve and hysteresis loop in ferromagnetic materials. The Jiles-Atherton Model is an important tool in engineering applications due to its relatively simple differential formulation. However, determining the simulation parameters for the anhysteretic curve is challenging. Several methods have been proposed, primarily based on mathematical aspects of the anhysteretic and first magnetization curves and hysteresis loops. This paper focuses on finding the magnetic moments of the material, which are used to define the simulation parameters for its anhysteretic curve. The proposed method involves using the susceptibility of the material and a linear approximation of a paramagnet to find the magnetic moments. The simulation parameters can then be found based on the magnetic moments. The method is validated theoretically and experimentally and offers a more physical approach to finding simulation parameters for the anhysteretic curve and a simplified way of determining the magnetic moments of the material.

This paper presents a novel approach named Persona-Grouping-Intelligence (PGI), which has been crafted to tackle the challenges posed by GPT models when applied to real-world business issues. PGI leverages the inherent capabilities of the GPT model to comprehend intricate language structures and generate responses that are contextually relevant. The experiment occurred in a business scenario where human intelligence was being underutilized due to less optimized business processes. The primary objective of this approach is to leverage GPT models to reduce the workload on humans in tasks that are extensive, monotonous, and repetitive. Instead, the focus is redirected toward decision-making activities. Remarkably, the experiment yielded an accuracy rate of 93.81% in validating 4,000 responses generated by the model, underscoring the effectiveness of the PGI strategies. Effectively addressing the issue of underutilized human intelligence, this paradigm shift aligns business environments with dynamic machine intelligence, enabling them to navigate the intricacies of real-world challenges. This approach facilitates the practical utilization of these models to tackle actual problems. The methodology offers an opportunity to reshape the fundamental structure of business processes by seamlessly integrating human decision-making with adaptable machine intelligence. Consequently, this optimization enhances operational efficiency and elevates strategic decision-making across diverse business contexts.

As it is hard to calibrate single-view RGB images in the wild, existing 3D human mesh reconstruction (3DHMR) methods either use a constant large focal length or estimate one based on the background environment context, which can not tackle the problem of the torso, limb, hand or face distortion caused by perspective camera projection when the camera is close to the human body. The naive focal length assumptions can harm this task with the incorrectly formulated projection matrices. To solve this, we propose Zolly, the first 3DHMR method focusing on perspective-distorted images. Our approach begins with analysing the reason for perspective distortion, which we find is mainly caused by the relative location of the human body to the camera center. We propose a new camera model and a novel 2D representation, termed distortion image, which describes the 2D dense distortion scale of the human body. We then estimate the distance from distortion scale features rather than environment context features. Afterwards, we integrate the distortion feature with image features to reconstruct the body mesh. To formulate the correct projection matrix and locate the human body position, we simultaneously use perspective and weak-perspective projection loss. Since existing datasets could not handle this task, we propose the first synthetic dataset PDHuman and extend two real-world datasets tailored for this task, all containing perspective-distorted human images. Extensive experiments show that Zolly outperforms existing state-of-the-art methods on both perspective-distorted datasets and the standard benchmark (3DPW).

Transformer-based pre-trained models like BERT have achieved great progress on Semantic Sentence Matching. Meanwhile, dependency prior knowledge has also shown general benefits in multiple NLP tasks. However, how to efficiently integrate dependency prior structure into pre-trained models to better model complex semantic matching relations is still unsettled. In this paper, we propose the \textbf{D}ependency-Enhanced \textbf{A}daptive \textbf{F}usion \textbf{A}ttention (\textbf{DAFA}), which explicitly introduces dependency structure into pre-trained models and adaptively fuses it with semantic information. Specifically, \textbf{\emph{(i)}} DAFA first proposes a structure-sensitive paradigm to construct a dependency matrix for calibrating attention weights. It adopts an adaptive fusion module to integrate the obtained dependency information and the original semantic signals. Moreover, DAFA reconstructs the attention calculation flow and provides better interpretability. By applying it on BERT, our method achieves state-of-the-art or competitive performance on 10 public datasets, demonstrating the benefits of adaptively fusing dependency structure in semantic matching task.

Recent researches indicate that Pre-trained Large Language Models (LLMs) possess cognitive constructs similar to those observed in humans, prompting researchers to investigate the cognitive aspects of LLMs. This paper focuses on explicit and implicit social bias, a distinctive two-level cognitive construct in psychology. It posits that individuals' explicit social bias, which is their conscious expression of bias in the statements, may differ from their implicit social bias, which represents their unconscious bias. We propose a two-stage approach and discover a parallel phenomenon in LLMs known as "re-judge inconsistency" in social bias. In the initial stage, the LLM is tasked with automatically completing statements, potentially incorporating implicit social bias. However, in the subsequent stage, the same LLM re-judges the biased statement generated by itself but contradicts it. We propose that this re-judge inconsistency can be similar to the inconsistency between human's unaware implicit social bias and their aware explicit social bias. Experimental investigations on ChatGPT and GPT-4 concerning common gender biases examined in psychology corroborate the highly stable nature of the re-judge inconsistency. This finding may suggest that diverse cognitive constructs emerge as LLMs' capabilities strengthen. Consequently, leveraging psychological theories can provide enhanced insights into the underlying mechanisms governing the expressions of explicit and implicit constructs in LLMs.

Existing K-nearest neighbor (KNN) retrieval-based methods usually conduct industrial anomaly detection in two stages: obtain feature representations with a pre-trained CNN model and perform distance measures for defect detection. However, the features are not fully exploited as they ignore domain bias and the difference of local density in feature space, which limits the detection performance. In this paper, we propose Reducing Biases (REB) in representation by considering the domain bias of the pre-trained model and building a self-supervised learning task for better domain adaption with a defect generation strategy (DefectMaker) imitating the natural defects. Additionally, we propose a local density KNN (LDKNN) to reduce the local density bias and obtain effective anomaly detection. We achieve a promising result of 99.5\% AUROC on the widely used MVTec AD benchmark. We also achieve 88.0\% AUROC on the challenging MVTec LOCO AD dataset and bring an improvement of 4.7\% AUROC to the state-of-the-art result. All results are obtained with smaller backbone networks such as Vgg11 and Resnet18, which indicates the effectiveness and efficiency of REB for practical industrial applications.

We introduce ChatSQC, an innovative chatbot system that combines the power of OpenAI's Large Language Models (LLM) with a specific knowledge base in Statistical Quality Control (SQC). Our research focuses on enhancing LLMs using specific SQC references, shedding light on how data preprocessing parameters and LLM selection impact the quality of generated responses. By illustrating this process, we hope to motivate wider community engagement to refine LLM design and output appraisal techniques. We also highlight potential research opportunities within the SQC domain that can be facilitated by leveraging ChatSQC, thereby broadening the application spectrum of SQC. A primary goal of our work is to equip practitioners with a tool capable of generating precise SQC-related responses, thereby democratizing access to advanced SQC knowledge. To continuously improve ChatSQC, we ask the SQC community to provide feedback, highlight potential issues, request additional features, and/or contribute via pull requests through our public GitHub repository. Additionally, the team will continue to explore adding supplementary reference material that would further improve the contextual understanding of the chatbot. Overall, ChatSQC serves as a testament to the transformative potential of AI within SQC, and we hope it will spur further advancements in the integration of AI in this field.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.

Recently pre-trained language representation models such as BERT have shown great success when fine-tuned on downstream tasks including information retrieval (IR). However, pre-training objectives tailored for ad-hoc retrieval have not been well explored. In this paper, we propose Pre-training with Representative wOrds Prediction (PROP) for ad-hoc retrieval. PROP is inspired by the classical statistical language model for IR, specifically the query likelihood model, which assumes that the query is generated as the piece of text representative of the "ideal" document. Based on this idea, we construct the representative words prediction (ROP) task for pre-training. Given an input document, we sample a pair of word sets according to the document language model, where the set with higher likelihood is deemed as more representative of the document. We then pre-train the Transformer model to predict the pairwise preference between the two word sets, jointly with the Masked Language Model (MLM) objective. By further fine-tuning on a variety of representative downstream ad-hoc retrieval tasks, PROP achieves significant improvements over baselines without pre-training or with other pre-training methods. We also show that PROP can achieve exciting performance under both the zero- and low-resource IR settings. The code and pre-trained models are available at //github.com/Albert-Ma/PROP.

北京阿比特科技有限公司