亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A restaurant dinner may become a memorable experience due to an unexpected aspect enjoyed by the customer, such as an origami-making station in the waiting area. If aspects that are atypical for a restaurant experience were known in advance, they could be leveraged to make recommendations that have the potential to engender serendipitous experiences, further increasing user satisfaction. Although relatively rare, whenever encountered, atypical aspects often end up being mentioned in reviews due to their memorable quality. Correspondingly, in this paper we introduce the task of detecting atypical aspects in customer reviews. To facilitate the development of extraction models, we manually annotate benchmark datasets of reviews in three domains - restaurants, hotels, and hair salons, which we use to evaluate a number of language models, ranging from fine-tuning the instruction-based text-to-text transformer Flan-T5 to zero-shot and few-shot prompting of GPT-3.5.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Pivotal(公司) · 通用智能 · 多峰值 · 有向 ·
2023 年 12 月 26 日

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Protocols for tossing a common coin play a key role in the vast majority of implementations of consensus. Even though the common coins in the literature are usually \emph{fair} (they have equal chance of landing heads or tails), we focus on the problem of implementing a \emph{biased} common coin such that the probability of landing heads is $p \in [0,1]$. Even though biased common coins can be implemented using fair common coins, we show that this can require significant inter-party communication. In fact, we show that there is no bound on the number of messages needed to generate a common coin of bias $p$ in a way that tolerates even one malicious agent, even if we restrict $p$ to an arbitrary infinite subset of $[0,1]$ (e.g., rational numbers of the form $1/2^n$) and assume that the system is synchronous. By way of contrast, if we do not require the protocol to tolerate a faulty agent, we can do this. Thus, the cause of the message complexity is the requirement of fault tolerance.

Deep neural networks (DNNs) are vulnerable to backdoor attacks, where the adversary manipulates a small portion of training data such that the victim model predicts normally on the benign samples but classifies the triggered samples as the target class. The backdoor attack is an emerging yet threatening training-phase threat, leading to serious risks in DNN-based applications. In this paper, we revisit the trigger patterns of existing backdoor attacks. We reveal that they are either visible or not sparse and therefore are not stealthy enough. More importantly, it is not feasible to simply combine existing methods to design an effective sparse and invisible backdoor attack. To address this problem, we formulate the trigger generation as a bi-level optimization problem with sparsity and invisibility constraints and propose an effective method to solve it. The proposed method is dubbed sparse and invisible backdoor attack (SIBA). We conduct extensive experiments on benchmark datasets under different settings, which verify the effectiveness of our attack and its resistance to existing backdoor defenses. The codes for reproducing main experiments are available at \url{//github.com/YinghuaGao/SIBA}.

Cloud Service Providers, such as Google Cloud Platform, Microsoft Azure, or Amazon Web Services, offer continuously evolving cloud services. It is a growing industry. Businesses, such as Netflix and PayPal, rely on the Cloud for data storage, computing power, and other services. For businesses, the cloud reduces costs, provides flexibility, and allows for growth. However, there are security and privacy concerns regarding the Cloud. Because Cloud services are accessed through the internet, hackers and attackers could possibly access the servers from anywhere. To protect data in the Cloud, it should be encrypted before it is uploaded, it should be protected in storage and also in transit. On the other hand, data owners may need to access their encrypted data. It may also need to be altered, updated, deleted, read, searched, or shared with others. If data is decrypted in the Cloud, sensitive data is exposed and could be exposed and misused. One solution is to leave the data in its encrypted form and use Searchable Encryption (SE) which operates on encrypted data. The functionality of SE has improved since its inception and research continues to explore ways to improve SE. This paper reviews the functionality of Searchable Encryption, mostly related to Cloud services, in the years 2019 to 2023, and evaluates one of its schemes, Fully Homomorphic Encryption. Overall, it seems that research is at the point where SE efficiency is increased as multiple functionalities are aggregated and tested.

From the deployment of chatbots as procurement negotiators by corporations such as Walmart to autonomous agents providing 'differentiated chat' for managing overbooked flights, synthetic media are making the world of logistics their 'natural' habitat. Here the coordination of commodities, parts and labour design the problems and produce the training sets from which 'solutions' can be synthesised. But to what extent might synthetic media, surfacing via proto-platforms such as MidJourney and OpenAI and apps such as Eleven Labs and D:ID, be understood as logistical media? This paper details synthetic media experiments with 'ChatFOS', a GPT-based bot tasked with developing a logistics design business. Using its prompt-generated media outputs, we assemble a simulation and parody of AI's emerging functionalities within logistical worlds. In the process, and with clunky 'human-in-the-loop' stitching, we illustrate how large language models become media routers or switches, governing production of image prompts, website code, promotional copy, and investor pitch scenarios. Together these elements become links chained together in media ensembles such as the corporate website or the promotional video, fuelling the fictive logistics visualisation company we have 'founded'. The processes and methods of producing speculative scenarios via ChatFOS lead us to consider how synthetic media might be re-positioned as logistical media. Our experiments probe the ways in which the media of logistics and the logistics of media are increasingly enfolded. We ask: what can a (practice-based) articulation of this double-becoming of logistics and synthetic mediality tell us about the politics and aesthetics of contemporary computation and capital?

Is it true that if citizens understand hurricane probabilities, they will make more rational decisions for evacuation? Finding answers to such questions is not straightforward in the literature because the terms judgment and decision making are often used interchangeably. This terminology conflation leads to a lack of clarity on whether people make suboptimal decisions because of inaccurate judgments of information conveyed in visualizations or because they use alternative yet currently unknown heuristics. To decouple judgment from decision making, we review relevant concepts from the literature and present two preregistered experiments (N=601) to investigate if the task (judgment vs. decision making), the scenario (sports vs. humanitarian), and the visualization (quantile dotplots, density plots, probability bars) affect accuracy. While experiment 1 was inconclusive, we found evidence for a difference in experiment 2. Contrary to our expectations and previous research, which found decisions less accurate than their direct-equivalent judgments, our results pointed in the opposite direction. Our findings further revealed that decisions were less vulnerable to status-quo bias, suggesting decision makers may disfavor responses associated with inaction. We also found that both scenario and visualization types can influence peoples judgments and decisions. Although effect sizes are not large and results should be interpreted carefully, we conclude that judgments cannot be safely used as proxy tasks for decision making, and discuss implications for visualization research and beyond.

Chain-of-thought reasoning, a cognitive process fundamental to human intelligence, has garnered significant attention in the realm of artificial intelligence and natural language processing. However, there still remains a lack of a comprehensive survey for this arena. To this end, we take the first step and present a thorough survey of this research field carefully and widely. We use X-of-Thought to refer to Chain-of-Thought in a broad sense. In detail, we systematically organize the current research according to the taxonomies of methods, including XoT construction, XoT structure variants, and enhanced XoT. Additionally, we describe XoT with frontier applications, covering planning, tool use, and distillation. Furthermore, we address challenges and discuss some future directions, including faithfulness, multi-modal, and theory. We hope this survey serves as a valuable resource for researchers seeking to innovate within the domain of chain-of-thought reasoning.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司