Monocular 3D object detection is an inherently ill-posed problem, as it is challenging to predict accurate 3D localization from a single image. Existing monocular 3D detection knowledge distillation methods usually project the LiDAR onto the image plane and train the teacher network accordingly. Transferring LiDAR-based model knowledge to RGB-based models is more complex, so a general distillation strategy is needed. To alleviate cross-modal prob-lem, we propose MonoSKD, a novel Knowledge Distillation framework for Monocular 3D detection based on Spearman correlation coefficient, to learn the relative correlation between cross-modal features. Considering the large gap between these features, strict alignment of features may mislead the training, so we propose a looser Spearman loss. Furthermore, by selecting appropriate distillation locations and removing redundant modules, our scheme saves more GPU resources and trains faster than existing methods. Extensive experiments are performed to verify the effectiveness of our framework on the challenging KITTI 3D object detection benchmark. Our method achieves state-of-the-art performance until submission with no additional inference computational cost. Our codes are available at //github.com/Senwang98/MonoSKD
Describing the relationship between the variables in a study domain and modelling the data generating mechanism is a fundamental problem in many empirical sciences. Probabilistic graphical models are one common approach to tackle the problem. Learning the graphical structure for such models is computationally challenging and a fervent area of current research with a plethora of algorithms being developed. To facilitate the benchmarking of different methods, we present a novel Snakemake workflow, called Benchpress for producing scalable, reproducible, and platform-independent benchmarks of structure learning algorithms for probabilistic graphical models. Benchpress is interfaced via a simple JSON-file, which makes it accessible for all users, while the code is designed in a fully modular fashion to enable researchers to contribute additional methodologies. Benchpress currently provides an interface to a large number of state-of-the-art algorithms from libraries such as BDgraph, BiDAG, bnlearn, causal-learn, gCastle, GOBNILP, pcalg, r.blip, scikit-learn, TETRAD, and trilearn as well as a variety of methods for data generating models and performance evaluation. Alongside user-defined models and randomly generated datasets, the workflow also includes a number of standard datasets and graphical models from the literature, which may be included in a benchmarking study. We demonstrate the applicability of this workflow for learning Bayesian networks in five typical data scenarios. The source code and documentation is publicly available from //benchpressdocs.readthedocs.io.
Magnetic resonance imaging (MRI) is commonly used for brain tumor segmentation, which is critical for patient evaluation and treatment planning. To reduce the labor and expertise required for labeling, weakly-supervised semantic segmentation (WSSS) methods with class activation mapping (CAM) have been proposed. However, existing CAM methods suffer from low resolution due to strided convolution and pooling layers, resulting in inaccurate predictions. In this study, we propose a novel CAM method, Attentive Multiple-Exit CAM (AME-CAM), that extracts activation maps from multiple resolutions to hierarchically aggregate and improve prediction accuracy. We evaluate our method on the BraTS 2021 dataset and show that it outperforms state-of-the-art methods.
Work on personality detection has tended to incorporate psychological features from different personality models, such as BigFive and MBTI. There are more than 900 psychological features, each of which is helpful for personality detection. However, when used in combination, the application of different calculation standards among these features may result in interference between features calculated using distinct systems, thereby introducing noise and reducing performance. This paper adapts different psychological models in the proposed PsyAttention for personality detection, which can effectively encode psychological features, reducing their number by 85%. In experiments on the BigFive and MBTI models, PysAttention achieved average accuracy of 65.66% and 86.30%, respectively, outperforming state-of-the-art methods, indicating that it is effective at encoding psychological features.
Video panoptic segmentation requires consistently segmenting (for both `thing' and `stuff' classes) and tracking objects in a video over time. In this work, we present MaXTron, a general framework that exploits Mask XFormer with Trajectory Attention to tackle the task. MaXTron enriches an off-the-shelf mask transformer by leveraging trajectory attention. The deployed mask transformer takes as input a short clip consisting of only a few frames and predicts the clip-level segmentation. To enhance the temporal consistency, MaXTron employs within-clip and cross-clip tracking modules, efficiently utilizing trajectory attention. Originally designed for video classification, trajectory attention learns to model the temporal correspondences between neighboring frames and aggregates information along the estimated motion paths. However, it is nontrivial to directly extend trajectory attention to the per-pixel dense prediction tasks due to its quadratic dependency on input size. To alleviate the issue, we propose to adapt the trajectory attention for both the dense pixel features and object queries, aiming to improve the short-term and long-term tracking results, respectively. Particularly, in our within-clip tracking module, we propose axial-trajectory attention that effectively computes the trajectory attention for tracking dense pixels sequentially along the height- and width-axes. The axial decomposition significantly reduces the computational complexity for dense pixel features. In our cross-clip tracking module, since the object queries in mask transformer are learned to encode the object information, we are able to capture the long-term temporal connections by applying trajectory attention to object queries, which learns to track each object across different clips. Without bells and whistles, MaXTron demonstrates state-of-the-art performances on video segmentation benchmarks.
The engineering of IoT systems brings about various challenges due to the inherent complexities associated with such heterogeneous systems. In this paper, we propose a library of statechart templates, STL4IoT, for designing complex IoT systems. We have developed atomic statechart components modelling the heterogeneous aspects of IoT systems including sensors, actuators, physical entities, network, and controller. Base system units for smart systems have also been designed. A component for calculating power usage is available in the library. Additionally, a smart hub template that controls interactions among multiple IoT systems and manages power consumption has also been proposed. The templates aim to facilitate the modelling and simulation of IoT systems. Our work is demonstrated with a smart home system consisting of a smart hub of lights, a smart microwave, a smart TV, and a smart fire alarm system. We have created a multi statechart with itemis CREATE based on the proposed templates and components. A smart home simulator has been developed by generating controller code from the statechart and integrating it with a user interface.
Due to its conceptual simplicity and generality, compressive neural representation has emerged as a promising alternative to traditional compression methods for managing massive volumetric datasets. The current practice of neural compression utilizes a single large multilayer perceptron (MLP) to encode the global volume, incurring slow training and inference. This paper presents an efficient compressive neural representation (ECNR) solution for time-varying data compression, utilizing the Laplacian pyramid for adaptive signal fitting. Following a multiscale structure, we leverage multiple small MLPs at each scale for fitting local content or residual blocks. By assigning similar blocks to the same MLP via size uniformization, we enable balanced parallelization among MLPs to significantly speed up training and inference. Working in concert with the multiscale structure, we tailor a deep compression strategy to compact the resulting model. We show the effectiveness of ECNR with multiple datasets and compare it with state-of-the-art compression methods (mainly SZ3, TTHRESH, and neurcomp). The results position ECNR as a promising solution for volumetric data compression.
Liesel is a new probabilistic programming framework developed with the aim of supporting research on Bayesian inference based on Markov chain Monte Carlo (MCMC) simulations in general and semi-parametric regression specifications in particular. Its three main components are (i) an R interface (RLiesel) for the configuration of an initial semi-parametric regression model, (ii) a graph-based model building library, where the initial model graph can be manipulated to incorporate new research ideas, and (iii) an MCMC library for designing modular inference algorithms combining multiple types of well-tested and possibly customized MCMC kernels. The graph builder as well as the MCMC library are implemented in Python, relying on JAX as a numerical computing library, and can therefore benefit from the latest machine learning technology such as automatic differentiation, just-in-time (JIT) compilation, and the use of high-performance computing devices such as tensor processing units (TPUs). Liesel provides all required tools for efficient and reliable statistical research on complex models and estimation algorithms. Its modular design allows users to expand the model library and inference algorithms, offering the flexibility and customization options to tailor the software to any specific research needs.
As robots become more widely available outside industrial settings, the need for reliable object grasping and manipulation is increasing. In such environments, robots must be able to grasp and manipulate novel objects in various situations. This paper presents GraspCaps, a novel architecture based on Capsule Networks for generating per-point 6D grasp configurations for familiar objects. GraspCaps extracts a rich feature vector of the objects present in the point cloud input, which is then used to generate per-point grasp vectors. This approach allows the network to learn specific grasping strategies for each object category. In addition to GraspCaps, the paper also presents a method for generating a large object-grasping dataset using simulated annealing. The obtained dataset is then used to train the GraspCaps network. Through extensive experiments, we evaluate the performance of the proposed approach, particularly in terms of the success rate of grasping familiar objects in challenging real and simulated scenarios. The experimental results showed that the overall object-grasping performance of the proposed approach is significantly better than the selected baseline. This superior performance highlights the effectiveness of the GraspCaps in achieving successful object grasping across various scenarios.
With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.