亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in deep learning have given us some very promising results on the generalization ability of deep neural networks, however literature still lacks a comprehensive theory explaining why heavily over-parametrized models are able to generalize well while fitting the training data. In this paper we propose a PAC type bound on the generalization error of feedforward ReLU networks via estimating the Rademacher complexity of the set of networks available from an initial parameter vector via gradient descent. The key idea is to bound the sensitivity of the network's gradient to perturbation of the input data along the optimization trajectory. The obtained bound does not explicitly depend on the depth of the network. Our results are experimentally verified on the MNIST and CIFAR-10 datasets.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The privacy in classical federated learning can be breached through the use of local gradient results by using engineered queries from the clients. However, quantum communication channels are considered more secure because the use of measurements in the data causes some loss of information, which can be detected. Therefore, the quantum version of federated learning can be used to provide more privacy. Additionally, sending an $N$ dimensional data vector through a quantum channel requires sending $\log N$ entangled qubits, which can provide exponential efficiency if the data vector is obtained as quantum states. In this paper, we propose a quantum federated learning model where fixed design quantum chips are operated based on the quantum states sent by a centralized server. Based on the coming superposition states, the clients compute and then send their local gradients as quantum states to the server, where they are aggregated to update parameters. Since the server does not send model parameters, but instead sends the operator as a quantum state, the clients are not required to share the model. This allows for the creation of asynchronous learning models. In addition, the model as a quantum state is fed into client-side chips directly; therefore, it does not require measurements on the upcoming quantum state to obtain model parameters in order to compute gradients. This can provide efficiency over the models where parameter vector is sent via classical or quantum channels and local gradients are obtained through the obtained values of these parameters.

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

Graph Neural Networks (GNNs) have emerged in recent years as a powerful tool to learn tasks across a wide range of graph domains in a data-driven fashion; based on a message passing mechanism, GNNs have gained increasing popularity due to their intuitive formulation, closely linked with the Weisfeiler-Lehman (WL) test for graph isomorphism, to which they have proven equivalent. From a theoretical point of view, GNNs have been shown to be universal approximators, and their generalization capability (namely, bounds on the Vapnik Chervonekis (VC) dimension) has recently been investigated for GNNs with piecewise polynomial activation functions. The aim of our work is to extend this analysis on the VC dimension of GNNs to other commonly used activation functions, such as sigmoid and hyperbolic tangent, using the framework of Pfaffian function theory. Bounds are provided with respect to architecture parameters (depth, number of neurons, input size) as well as with respect to the number of colors resulting from the 1-WL test applied on the graph domain. The theoretical analysis is supported by a preliminary experimental study.

Mobile app repositories have been largely used in scientific research as large-scale, highly adaptive crowdsourced information systems. These software platforms can potentially nourish multiple software and requirements engineering tasks based on user reviews and other natural language documents, including feedback analysis, recommender systems and topic modelling. Consequently, researchers often endeavour to overcome domain-specific challenges, including integration of heterogeneous data sources, large-scale data collection and adaptation of a publicly available data set for a given research scenario. In this paper, we present MApp-KG, a combination of software resources and data artefacts in the field of mobile app repositories to support extended knowledge generation tasks. Our contribution aims to provide a framework for automatically constructing a knowledge graph modelling a domain-specific catalogue of mobile apps. Complementarily, we distribute MApp-KG in a public triplestore and as a static data snapshot, which may be promptly employed for future research and reproduction of our findings.

When different researchers study the same research question using the same dataset they may obtain different and potentially even conflicting results. This is because there is often substantial flexibility in researchers' analytical choices, an issue also referred to as ''researcher degrees of freedom''. Combined with selective reporting of the smallest p-value or largest effect, researcher degrees of freedom may lead to an increased rate of false positive and overoptimistic results. In this paper, we address this issue by formalizing the multiplicity of analysis strategies as a multiple testing problem. As the test statistics of different analysis strategies are usually highly dependent, a naive approach such as the Bonferroni correction is inappropriate because it leads to an unacceptable loss of power. Instead, we propose using the ''minP'' adjustment method, which takes potential test dependencies into account and approximates the underlying null distribution of the minimal p-value through a permutation-based procedure. This procedure is known to achieve more power than simpler approaches while ensuring a weak control of the family-wise error rate. We illustrate our approach for addressing researcher degrees of freedom by applying it to a study on the impact of perioperative paO2 on post-operative complications after neurosurgery. A total of 48 analysis strategies are considered and adjusted using the minP procedure. This approach allows to selectively report the result of the analysis strategy yielding the most convincing evidence, while controlling the type 1 error -- and thus the risk of publishing false positive results that may not be replicable.

In this article, we consider the singular value asymptotics of compositions of compact linear operators mapping in the real Hilbert space of quadratically integrable functions over the unit interval. Specifically, the composition is given by the compact simple integration operator followed by the non-compact Ces`aro operator possessing a non-closed range. We show that the degree of ill-posedness of that composition is two, which means that the Ces`aro operator increases the degree of illposedness by the amount of one compared to the simple integration operator.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

Neural network with quadratic decision functions have been introduced as alternatives to standard neural networks with affine linear one. They are advantageous when the objects to be identified are of compact basic geometries like circles, ellipsis etc. In this paper we investigate the use of such ansatz functions for classification. In particular we test and compare the algorithm on the MNIST dataset for classification of handwritten digits and for classification of subspecies. We also show, that the implementation can be based on the neural network structure in the software Tensorflow and Keras, respectively.

Power posteriors "robustify" standard Bayesian inference by raising the likelihood to a constant fractional power, effectively downweighting its influence in the calculation of the posterior. Power posteriors have been shown to be more robust to model misspecification than standard posteriors in many settings. Previous work has shown that power posteriors derived from low-dimensional, parametric locally asymptotically normal models are asymptotically normal (Bernstein-von Mises) even under model misspecification. We extend these results to show that the power posterior moments converge to those of the limiting normal distribution suggested by the Bernstein-von Mises theorem. We then use this result to show that the mean of the power posterior, a point estimator, is asymptotically equivalent to the maximum likelihood estimator.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司