亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large Language Models (LLMs) have recently shown remarkable capabilities in various software engineering tasks, spurring the rapid development of the Large Language Models for Software Engineering (LLM4SE) area. However, limited attention has been paid to crafting efficient LLM4SE solutions that demand minimal time and memory resources, as well as green LLM4SE solutions that reduce energy consumption and carbon emissions. This 2030 Software Engineering position paper aims to redirect the focus of the research community towards the efficiency and greenness of LLM4SE, while also sharing potential research directions to achieve this goal. It commences with a brief overview of the significance of LLM4SE and highlights the need for efficient and green LLM4SE solutions. Subsequently, the paper presents a vision for a future where efficient and green LLM4SE revolutionizes the software engineering tool landscape, benefiting various stakeholders, including industry, individual practitioners, and society. The paper then delineates a roadmap for future research, outlining specific research paths and potential solutions for the research community to pursue. While not intended to be a definitive guide, the paper aims to inspire further progress, with the ultimate goal of establishing efficient and green LLM4SE as a central element in the future of software engineering.

相關內容

《工程》是中國工程院(CAE)于2015年推出的國際開放存取期刊。其目的是提供一個高水平的平臺,傳播和分享工程研發的前沿進展、當前主要研究成果和關鍵成果;報告工程科學的進展,討論工程發展的熱點、興趣領域、挑戰和前景,在工程中考慮人與環境的福祉和倫理道德,鼓勵具有深遠經濟和社會意義的工程突破和創新,使之達到國際先進水平,成為新的生產力,從而改變世界,造福人類,創造新的未來。 期刊鏈接: · 可辨認的 · Pivotal(公司) · 評論員 · Integration ·
2024 年 5 月 21 日

Face Recognition Systems (FRS) have increasingly integrated into critical applications, including surveillance and user authentication, highlighting their pivotal role in modern security systems. Recent studies have revealed vulnerabilities in FRS to adversarial (e.g., adversarial patch attacks) and backdoor attacks (e.g., training data poisoning), raising significant concerns about their reliability and trustworthiness. Previous studies primarily focus on traditional adversarial or backdoor attacks, overlooking the resource-intensive or privileged-manipulation nature of such threats, thus limiting their practical generalization, stealthiness, universality and robustness. Correspondingly, in this paper, we delve into the inherent vulnerabilities in FRS through user studies and preliminary explorations. By exploiting these vulnerabilities, we identify a novel attack, facial identity backdoor attack dubbed FIBA, which unveils a potentially more devastating threat against FRS:an enrollment-stage backdoor attack. FIBA circumvents the limitations of traditional attacks, enabling broad-scale disruption by allowing any attacker donning a specific trigger to bypass these systems. This implies that after a single, poisoned example is inserted into the database, the corresponding trigger becomes a universal key for any attackers to spoof the FRS. This strategy essentially challenges the conventional attacks by initiating at the enrollment stage, dramatically transforming the threat landscape by poisoning the feature database rather than the training data.

Predictive Maintenance (PdM) emerged as one of the pillars of Industry 4.0, and became crucial for enhancing operational efficiency, allowing to minimize downtime, extend lifespan of equipment, and prevent failures. A wide range of PdM tasks can be performed using Artificial Intelligence (AI) methods, which often use data generated from industrial sensors. The steel industry, which is an important branch of the global economy, is one of the potential beneficiaries of this trend, given its large environmental footprint, the globalized nature of the market, and the demanding working conditions. This survey synthesizes the current state of knowledge in the field of AI-based PdM within the steel industry and is addressed to researchers and practitioners. We identified 219 articles related to this topic and formulated five research questions, allowing us to gain a global perspective on current trends and the main research gaps. We examined equipment and facilities subjected to PdM, determined common PdM approaches, and identified trends in the AI methods used to develop these solutions. We explored the characteristics of the data used in the surveyed articles and assessed the practical implications of the research presented there. Most of the research focuses on the blast furnace or hot rolling, using data from industrial sensors. Current trends show increasing interest in the domain, especially in the use of deep learning. The main challenges include implementing the proposed methods in a production environment, incorporating them into maintenance plans, and enhancing the accessibility and reproducibility of the research.

Ordinal Classification (OC) is a widely encountered challenge in Natural Language Processing (NLP), with applications in various domains such as sentiment analysis, rating prediction, and more. Previous approaches to tackle OC have primarily focused on modifying existing or creating novel loss functions that \textbf{explicitly} account for the ordinal nature of labels. However, with the advent of Pretrained Language Models (PLMs), it became possible to tackle ordinality through the \textbf{implicit} semantics of the labels as well. This paper provides a comprehensive theoretical and empirical examination of both these approaches. Furthermore, we also offer strategic recommendations regarding the most effective approach to adopt based on specific settings.

Graph Neural Networks (GNNs) have emerged as promising solutions for collaborative filtering (CF) through the modeling of user-item interaction graphs. The nucleus of existing GNN-based recommender systems involves recursive message passing along user-item interaction edges to refine encoded embeddings. Despite their demonstrated effectiveness, current GNN-based methods encounter challenges of limited receptive fields and the presence of noisy "interest-irrelevant" connections. In contrast, Transformer-based methods excel in aggregating information adaptively and globally. Nevertheless, their application to large-scale interaction graphs is hindered by inherent complexities and challenges in capturing intricate, entangled structural information. In this paper, we propose TransGNN, a novel model that integrates Transformer and GNN layers in an alternating fashion to mutually enhance their capabilities. Specifically, TransGNN leverages Transformer layers to broaden the receptive field and disentangle information aggregation from edges, which aggregates information from more relevant nodes, thereby enhancing the message passing of GNNs. Additionally, to capture graph structure information effectively, positional encoding is meticulously designed and integrated into GNN layers to encode such structural knowledge into node attributes, thus enhancing the Transformer's performance on graphs. Efficiency considerations are also alleviated by proposing the sampling of the most relevant nodes for the Transformer, along with two efficient sample update strategies to reduce complexity. Furthermore, theoretical analysis demonstrates that TransGNN offers increased expressiveness compared to GNNs, with only a marginal increase in linear complexity. Extensive experiments on five public datasets validate the effectiveness and efficiency of TransGNN.

This research delves into the enhancement of control mechanisms for the da Vinci Surgical System, focusing on the implementation of gravity compensation and refining the modeling of the master and patient side manipulators. Leveraging the Robot Operating System (ROS) the study aimed to fortify the precision and stability of the robots movements essential for intricate surgical procedures. Through rigorous parameter identification and the Euler Lagrange approach the team successfully derived the necessary torque equations and established a robust mathematical model. Implementation of the actual robot and simulation in Gazebo highlighted the efficacy of the developed control strategies facilitating accurate positioning and minimizing drift. Additionally, the project extended its contributions by constructing a comprehensive model for the patient side manipulator laying the groundwork for future research endeavors. This work signifies a significant advancement in the pursuit of enhanced precision and user control in robotic assisted surgeries. NOTE - This work has been submitted to the IEEE R-AL for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

The IoT and Business Process Management (BPM) communities co-exist in many shared application domains, such as manufacturing and healthcare. The IoT community has a strong focus on hardware, connectivity and data; the BPM community focuses mainly on finding, controlling, and enhancing the structured interactions among the IoT devices in processes. While the field of Process Mining deals with the extraction of process models and process analytics from process event logs, the data produced by IoT sensors often is at a lower granularity than these process-level events. The fundamental questions about extracting and abstracting process-related data from streams of IoT sensor values are: (1) Which sensor values can be clustered together as part of process events?, (2) Which sensor values signify the start and end of such events?, (3) Which sensor values are related but not essential? This work proposes a framework to semi-automatically perform a set of structured steps to convert low-level IoT sensor data into higher-level process events that are suitable for process mining. The framework is meant to provide a generic sequence of abstract steps to guide the event extraction, abstraction, and correlation, with variation points for plugging in specific analysis techniques and algorithms for each step. To assess the completeness of the framework, we present a set of challenges, how they can be tackled through the framework, and an example on how to instantiate the framework in a real-world demonstration from the field of smart manufacturing. Based on this framework, future research can be conducted in a structured manner through refining and improving individual steps.

The advent of Large Language Models (LLMs) has ushered in a new era for design science in Information Systems, demanding a paradigm shift in tailoring LLMs design for business contexts. We propose and test a novel framework to customize LLMs for general business contexts that aims to achieve three fundamental objectives simultaneously: (1) aligning conversational patterns, (2) integrating in-depth domain knowledge, and (3) embodying theory-driven soft skills and core principles. We design methodologies that combine domain-specific theory with Supervised Fine Tuning (SFT) to achieve these objectives simultaneously. We instantiate our proposed framework in the context of medical consultation. Specifically, we carefully construct a large volume of real doctors' consultation records and medical knowledge from multiple professional databases. Additionally, drawing on medical theory, we identify three soft skills and core principles of human doctors: professionalism, explainability, and emotional support, and design approaches to integrate these traits into LLMs. We demonstrate the feasibility of our framework using online experiments with thousands of real patients as well as evaluation by domain experts and consumers. Experimental results show that the customized LLM model substantially outperforms untuned base model in medical expertise as well as consumer satisfaction and trustworthiness, and it substantially reduces the gap between untuned LLMs and human doctors, elevating LLMs to the level of human experts. Additionally, we delve into the characteristics of textual consultation records and adopt interpretable machine learning techniques to identify what drives the performance gain. Finally, we showcase the practical value of our model through a decision support system designed to assist human doctors in a lab experiment.

The rise of Large Language Models (LLMs) has significantly advanced many applications on software engineering tasks, particularly in code generation. Despite the promising performance, LLMs are prone to generate hallucinations, which means LLMs might produce outputs that deviate from users' intent, exhibit internal inconsistencies, or misalign with the factual knowledge, making the deployment of LLMs potentially risky in a wide range of applications. Existing work mainly focuses on investing the hallucination in the domain of natural language generation (NLG), leaving a gap in understanding the types and extent of hallucinations in the context of code generation. To bridge the gap, we conducted a thematic analysis of the LLM-generated code to summarize and categorize the hallucinations present in it. Our study established a comprehensive taxonomy of hallucinations in LLM-generated code, encompassing 5 primary categories of hallucinations depending on the conflicting objectives and varying degrees of deviation observed in code generation. Furthermore, we systematically analyzed the distribution of hallucinations, exploring variations among different LLMs and their correlation with code correctness. Based on the results, we proposed HalluCode, a benchmark for evaluating the performance of code LLMs in recognizing hallucinations. Hallucination recognition and mitigation experiments with HalluCode and HumanEval show existing LLMs face great challenges in recognizing hallucinations, particularly in identifying their types, and are hardly able to mitigate hallucinations. We believe our findings will shed light on future research about hallucination evaluation, detection, and mitigation, ultimately paving the way for building more effective and reliable code LLMs in the future.

Self-Admitted Technical Debt (SATD), a concept highlighting sub-optimal choices in software development documented in code comments or other project resources, poses challenges in the maintainability and evolution of software systems. Large language models (LLMs) have demonstrated significant effectiveness across a broad range of software tasks, especially in software text generation tasks. Nonetheless, their effectiveness in tasks related to SATD is still under-researched. In this paper, we investigate the efficacy of LLMs in both identification and classification of SATD. For both tasks, we investigate the performance gain from using more recent LLMs, specifically the Flan-T5 family, across different common usage settings. Our results demonstrate that for SATD identification, all fine-tuned LLMs outperform the best existing non-LLM baseline, i.e., the CNN model, with a 4.4% to 7.2% improvement in F1 score. In the SATD classification task, while our largest fine-tuned model, Flan-T5-XL, still led in performance, the CNN model exhibited competitive results, even surpassing four of six LLMs. We also found that the largest Flan-T5 model, i.e., Flan-T5-XXL, when used with a zero-shot in-context learning (ICL) approach for SATD identification, provides competitive results with traditional approaches but performs 6.4% to 9.2% worse than fine-tuned LLMs. For SATD classification, few-shot ICL approach, incorporating examples and category descriptions in prompts, outperforms the zero-shot approach and even surpasses the fine-tuned smaller Flan-T5 models. Moreover, our experiments demonstrate that incorporating contextual information, such as surrounding code, into the SATD classification task enables larger fine-tuned LLMs to improve their performance.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司