亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In energy-efficient schemes, finding the optimal size of deep learning models is very important and has a broad impact. Meanwhile, recent studies have reported an unexpected phenomenon, the sparse double descent: as the model's sparsity increases, the performance first worsens, then improves, and finally deteriorates. Such a non-monotonic behavior raises serious questions about the optimal model's size to maintain high performance: the model needs to be sufficiently over-parametrized, but having too many parameters wastes training resources. In this paper, we aim to find the best trade-off efficiently. More precisely, we tackle the occurrence of the sparse double descent and present some solutions to avoid it. Firstly, we show that a simple $\ell_2$ regularization method can help to mitigate this phenomenon but sacrifices the performance/sparsity compromise. To overcome this problem, we then introduce a learning scheme in which distilling knowledge regularizes the student model. Supported by experimental results achieved using typical image classification setups, we show that this approach leads to the avoidance of such a phenomenon.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 表示學習 · state-of-the-art · 表示 · 泛函 ·
2023 年 10 月 18 日

Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein functions. Recent sequence representation learning methods based on Protein Language Models (PLMs) excel in sequence-based tasks, but their direct adaptation to tasks involving protein structures remains a challenge. In contrast, structure-based methods leverage 3D structural information with graph neural networks and geometric pre-training methods show potential in function prediction tasks, but still suffers from the limited number of available structures. To bridge this gap, our study undertakes a comprehensive exploration of joint protein representation learning by integrating a state-of-the-art PLM (ESM-2) with distinct structure encoders (GVP, GearNet, CDConv). We introduce three representation fusion strategies and explore different pre-training techniques. Our method achieves significant improvements over existing sequence- and structure-based methods, setting new state-of-the-art for function annotation. This study underscores several important design choices for fusing protein sequence and structure information. Our implementation is available at //github.com/DeepGraphLearning/ESM-GearNet.

Large-scale pre-trained models are increasingly adapted to downstream tasks through a new paradigm called prompt learning. In contrast to fine-tuning, prompt learning does not update the pre-trained model's parameters. Instead, it only learns an input perturbation, namely prompt, to be added to the downstream task data for predictions. Given the fast development of prompt learning, a well-generalized prompt inevitably becomes a valuable asset as significant effort and proprietary data are used to create it. This naturally raises the question of whether a prompt may leak the proprietary information of its training data. In this paper, we perform the first comprehensive privacy assessment of prompts learned by visual prompt learning through the lens of property inference and membership inference attacks. Our empirical evaluation shows that the prompts are vulnerable to both attacks. We also demonstrate that the adversary can mount a successful property inference attack with limited cost. Moreover, we show that membership inference attacks against prompts can be successful with relaxed adversarial assumptions. We further make some initial investigations on the defenses and observe that our method can mitigate the membership inference attacks with a decent utility-defense trade-off but fails to defend against property inference attacks. We hope our results can shed light on the privacy risks of the popular prompt learning paradigm. To facilitate the research in this direction, we will share our code and models with the community.

Nested simulation encompasses the estimation of functionals linked to conditional expectations through simulation techniques. In this paper, we treat conditional expectation as a function of the multidimensional conditioning variable and provide asymptotic analyses of general Least Squared Estimators on sieve, without imposing specific assumptions on the function's form. Our study explores scenarios in which the convergence rate surpasses that of the standard Monte Carlo method and the one recently proposed based on kernel ridge regression. We also delve into the conditions that allow for achieving the best possible square root convergence rate among all methods. Numerical experiments are conducted to support our statements.

Units of measure with prefixes and conversion rules are given a formal semantic model in terms of categorial group theory. Basic structures and both natural and contingent semantic operations are defined. Conversion rules are represented as a class of ternary relations with both group-like and category-like properties. A hierarchy of subclasses is explored, each with better algebraic behavior than the preceding, culminating in a direct efficient conversion-by-rewriting algorithm.

Anomaly detection requires detecting abnormal samples in large unlabeled datasets. While progress in deep learning and the advent of foundation models has produced powerful unsupervised anomaly detection methods, their deployment in practice is often hindered by the lack of labeled data -- without it, the detection accuracy of an anomaly detector cannot be evaluated reliably. In this work, we propose a general-purpose framework for evaluating image-based anomaly detectors with synthetically generated validation data. Our method assumes access to a small support set of normal images which are processed with a pre-trained diffusion model (our proposed method requires no training or fine-tuning) to produce synthetic anomalies. When mixed with normal samples from the support set, the synthetic anomalies create detection tasks that compose a validation framework for anomaly detection evaluation and model selection. In an extensive empirical study, ranging from natural images to industrial applications, we find that our synthetic validation framework selects the same models and hyper-parameters as selection with a ground-truth validation set. In addition, we find that prompts selected by our method for CLIP-based anomaly detection outperforms all other prompt selection strategies, and leads to the overall best detection accuracy, even on the challenging MVTec-AD dataset.

Realistic physics engines play a crucial role for learning to manipulate deformable objects such as garments in simulation. By doing so, researchers can circumvent challenges such as sensing the deformation of the object in the real-world. In spite of the extensive use of simulations for this task, few works have evaluated the reality gap between deformable object simulators and real-world data. We present a benchmark dataset to evaluate the sim-to-real gap in cloth manipulation. The dataset is collected by performing a dynamic cloth manipulation task involving contact with a rigid table. We use the dataset to evaluate the reality gap, computational time, and simulation stability of four popular deformable object simulators: MuJoCo, Bullet, Flex, and SOFA. Additionally, we discuss the benefits and drawbacks of each simulator. The benchmark dataset is open-source. Supplementary material, videos, and code, can be found at //sites.google.com/view/cloth-sim2real-benchmark.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司