亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Speech enhancement (SE) is crucial for reliable communication devices or robust speech recognition systems. Although conventional artificial neural networks (ANN) have demonstrated remarkable performance in SE, they require significant computational power, along with high energy costs. In this paper, we propose a novel approach to SE using a spiking neural network (SNN) based on a U-Net architecture. SNNs are suitable for processing data with a temporal dimension, such as speech, and are known for their energy-efficient implementation on neuromorphic hardware. As such, SNNs are thus interesting candidates for real-time applications on devices with limited resources. The primary objective of the current work is to develop an SNN-based model with comparable performance to a state-of-the-art ANN model for SE. We train a deep SNN using surrogate-gradient-based optimization and evaluate its performance using perceptual objective tests under different signal-to-noise ratios and real-world noise conditions. Our results demonstrate that the proposed energy-efficient SNN model outperforms the Intel Neuromorphic Deep Noise Suppression Challenge (Intel N-DNS Challenge) baseline solution and achieves acceptable performance compared to an equivalent ANN model.

相關內容

Neural machine translation (NMT) has achieved remarkable success in producing high-quality translations. However, current NMT systems suffer from a lack of reliability, as their outputs that are often affected by lexical or syntactic changes in inputs, resulting in large variations in quality. This limitation hinders the practicality and trustworthiness of NMT. A contributing factor to this problem is that NMT models trained with the one-to-one paradigm struggle to handle the source diversity phenomenon, where inputs with the same meaning can be expressed differently. In this work, we treat this problem as a bilevel optimization problem and present a consistency-aware meta-learning (CAML) framework derived from the model-agnostic meta-learning (MAML) algorithm to address it. Specifically, the NMT model with CAML (named CoNMT) first learns a consistent meta representation of semantically equivalent sentences in the outer loop. Subsequently, a mapping from the meta representation to the output sentence is learned in the inner loop, allowing the NMT model to translate semantically equivalent sentences to the same target sentence. We conduct experiments on the NIST Chinese to English task, three WMT translation tasks, and the TED M2O task. The results demonstrate that CoNMT effectively improves overall translation quality and reliably handles diverse inputs.

Multi-Agent Path Finding (MAPF) in crowded environments presents a challenging problem in motion planning, aiming to find collision-free paths for all agents in the system. MAPF finds a wide range of applications in various domains, including aerial swarms, autonomous warehouse robotics, and self-driving vehicles. The current approaches for MAPF can be broadly categorized into two main categories: centralized and decentralized planning. Centralized planning suffers from the curse of dimensionality and thus does not scale well in large and complex environments. On the other hand, decentralized planning enables agents to engage in real-time path planning within a partially observable environment, demonstrating implicit coordination. However, they suffer from slow convergence and performance degradation in dense environments. In this paper, we introduce CRAMP, a crowd-aware decentralized approach to address this problem by leveraging reinforcement learning guided by a boosted curriculum-based training strategy. We test CRAMP on simulated environments and demonstrate that our method outperforms the state-of-the-art decentralized methods for MAPF on various metrics. CRAMP improves the solution quality up to 58% measured in makespan and collision count, and up to 5% in success rate in comparison to previous methods.

Orthogonal frequency division multiplexing (OFDM) with offset quadrature amplitude modulation (OQAM) has been widely discussed in the literature and is considered a popular waveform for 5th generation (5G) wireless telecommunications and beyond. In this work, we show that OFDM-OQAM can be generated using the Hilbert transform and is equivalent to single sideband modulation (SSB), that has roots in analog telecommunications. The transmit filter for OFDM-OQAM is complex valued whose real part is given by the pulse corresponding to the root raised cosine spectrum and the imaginary part is the Hilbert transform of the real part. The real-valued digital information (message) are passed through the transmit filter and frequency division multiplexed on orthogonal subcarriers. The message bandwidth corresponding to each subcarrier is assumed to be narrow enough so that the channel can be considered ideal. Therefore, at the receiver, a matched filter can used to recover the message. Turbo coding is used to achieve bit-error-rate (BER) as low as $10^{-5}$ at an average signal-to-noise ratio (SNR) per bit close to 0 db. The system has been simulated in discrete time.

Gesture recognition is a pivotal technology in the realm of intelligent education, and millimeter-wave (mmWave) signals possess advantages such as high resolution and strong penetration capability. This paper introduces a highly accurate and robust gesture recognition method using mmWave radar. The method involves capturing the raw signals of hand movements with the mmWave radar module and preprocessing the received radar signals, including Fourier transformation, distance compression, Doppler processing, and noise reduction through moving target indication (MTI). The preprocessed signals are then fed into the Convolutional Neural Network-Time Domain Convolutional Network (CNN-TCN) model to extract spatio-temporal features, with recognition performance evaluated through classification. Experimental results demonstrate that this method achieves an accuracy rate of 98.2% in domain-specific recognition and maintains a consistently high recognition rate across different neural networks, showcasing exceptional recognition performance and robustness.

Grasping objects by a specific part is often crucial for safety and for executing downstream tasks. Yet, learning-based grasp planners lack this behavior unless they are trained on specific object part data, making it a significant challenge to scale object diversity. Instead, we propose LERF-TOGO, Language Embedded Radiance Fields for Task-Oriented Grasping of Objects, which uses vision-language models zero-shot to output a grasp distribution over an object given a natural language query. To accomplish this, we first reconstruct a LERF of the scene, which distills CLIP embeddings into a multi-scale 3D language field queryable with text. However, LERF has no sense of objectness, meaning its relevancy outputs often return incomplete activations over an object which are insufficient for subsequent part queries. LERF-TOGO mitigates this lack of spatial grouping by extracting a 3D object mask via DINO features and then conditionally querying LERF on this mask to obtain a semantic distribution over the object with which to rank grasps from an off-the-shelf grasp planner. We evaluate LERF-TOGO's ability to grasp task-oriented object parts on 31 different physical objects, and find it selects grasps on the correct part in 81% of all trials and grasps successfully in 69%. See the project website at: lerftogo.github.io

Many real-life applications of automatic speech recognition (ASR) require processing of overlapped speech. A commonmethod involves first separating the speech into overlap-free streams and then performing ASR on the resulting signals. Recently, the inclusion of a mixture encoder in the ASR model has been proposed. This mixture encoder leverages the original overlapped speech to mitigate the effect of artifacts introduced by the speech separation. Previously, however, the method only addressed two-speaker scenarios. In this work, we extend this approach to more natural meeting contexts featuring an arbitrary number of speakers and dynamic overlaps. We evaluate the performance using different speech separators, including the powerful TF-GridNet model. Our experiments show state-of-the-art performance on the LibriCSS dataset and highlight the advantages of the mixture encoder. Furthermore, they demonstrate the strong separation of TF-GridNet which largely closes the gap between previous methods and oracle separation.

One main challenge for implementing intelligent reflecting surface (IRS) aided communications lies in the difficulty to obtain the channel knowledge for the base station (BS)-IRS-user cascaded links, which is needed to design high-performance IRS reflection in practice. Traditional methods for estimating IRS cascaded channels are usually based on the additional pilot signals received at the BS/users, which increase the system training overhead and also may not be compatible with the current communication protocols. To tackle this challenge, we propose in this paper a new single-layer neural network (NN)-enabled IRS channel estimation method based on only the knowledge of users' individual received signal power measurements corresponding to different IRS random training reflections, which are easily accessible in current wireless systems. To evaluate the effectiveness of the proposed channel estimation method, we design the IRS reflection for data transmission based on the estimated cascaded channels in an IRS-aided multiuser communication system. Numerical results show that the proposed IRS channel estimation and reflection design can significantly improve the minimum received signal-to-noise ratio (SNR) among all users, as compared to existing power measurement based designs.

Many real-world dynamical systems can be described as State-Space Models (SSMs). In this formulation, each observation is emitted by a latent state, which follows first-order Markovian dynamics. A Probabilistic Deep SSM (ProDSSM) generalizes this framework to dynamical systems of unknown parametric form, where the transition and emission models are described by neural networks with uncertain weights. In this work, we propose the first deterministic inference algorithm for models of this type. Our framework allows efficient approximations for training and testing. We demonstrate in our experiments that our new method can be employed for a variety of tasks and enjoys a superior balance between predictive performance and computational budget.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司