The concept of differential privacy (DP) has gained substantial attention in recent years, most notably since the U.S. Census Bureau announced the adoption of the concept for its 2020 Decennial Census. However, despite its attractive theoretical properties, implementing DP in practice remains challenging, especially when it comes to survey data. In this paper we present some results from an ongoing project funded by the U.S. Census Bureau that is exploring the possibilities and limitations of DP for survey data. Specifically, we identify five aspects that need to be considered when adopting DP in the survey context: the multi-staged nature of data production; the limited privacy amplification from complex sampling designs; the implications of survey-weighted estimates; the weighting adjustments for nonresponse and other data deficiencies, and the imputation of missing values. We summarize the project's key findings with respect to each of these aspects and also discuss some of the challenges that still need to be addressed before DP could become the new data protection standard at statistical agencies.
FPGA programming is more complex as compared to Central Processing Units (CPUs) and Graphics Processing Units (GPUs). The coding languages to define the abstraction of Register Transfer Level (RTL) in High Level Synthesis (HLS) for FPGA platforms have emerged due to the laborious complexity of Hardware Description Languages (HDL). The HDL and High Level Synthesis (HLS) became complex when FPGA is adopted in high-performance parallel programs in multicore platforms of data centers. Writing an efficient host-side parallel program to control the hardware kernels placed in stacks of FPGAs is challenging and strenuous. The unavailability of efficient high level parallel programming tools for multi core architectures makes multicore parallel programming very unpopular for the masses. This work proposes an extension of FastFlow where data flows in hardware kernels can be executed efficiently in FPGA stacks. Here host side codes are generated automatically from simple csv files. The programmer needs to specify four simple parameters in these csv file: FPGA IDs, source, destination nodes, hardware kernel names. The proposed tool flow uses FastFlow libraries with Vitis to develop efficient and scalable parallel programs for FPGA stacks in data centers. The evidence from the implementation shows that the integration of FastFlow with Vitis reduces 96 % coding effort (in terms of number of lines) as compared to existing Vitis solutions.
The rapid development of Large Language Models (LLMs) creates new opportunities for recommender systems, especially by exploiting the side information (e.g., descriptions and analyses of items) generated by these models. However, aligning this side information with collaborative information from historical interactions poses significant challenges. The inherent biases within LLMs can skew recommendations, resulting in distorted and potentially unfair user experiences. On the other hand, propensity bias causes side information to be aligned in such a way that it often tends to represent all inputs in a low-dimensional subspace, leading to a phenomenon known as dimensional collapse, which severely restricts the recommender system's ability to capture user preferences and behaviours. To address these issues, we introduce a novel framework named Counterfactual LLM Recommendation (CLLMR). Specifically, we propose a spectrum-based side information encoder that implicitly embeds structural information from historical interactions into the side information representation, thereby circumventing the risk of dimension collapse. Furthermore, our CLLMR approach explores the causal relationships inherent in LLM-based recommender systems. By leveraging counterfactual inference, we counteract the biases introduced by LLMs. Extensive experiments demonstrate that our CLLMR approach consistently enhances the performance of various recommender models.
The advancements of Large Language Models (LLMs) have decentralized the responsibility for the transparency of AI usage. Specifically, LLM users are now encouraged or required to disclose the use of LLM-generated content for varied types of real-world tasks. However, an emerging phenomenon, users' secret use of LLM, raises challenges in ensuring end users adhere to the transparency requirement. Our study used mixed-methods with an exploratory survey (125 real-world secret use cases reported) and a controlled experiment among 300 users to investigate the contexts and causes behind the secret use of LLMs. We found that such secretive behavior is often triggered by certain tasks, transcending demographic and personality differences among users. Task types were found to affect users' intentions to use secretive behavior, primarily through influencing perceived external judgment regarding LLM usage. Our results yield important insights for future work on designing interventions to encourage more transparent disclosure of the use of LLMs or other AI technologies.
In recent years, Recommender Systems (RS) have witnessed a transformative shift with the advent of Large Language Models (LLMs) in the field of Natural Language Processing (NLP). Models such as GPT-3.5/4, Llama, have demonstrated unprecedented capabilities in understanding and generating human-like text. The extensive information pre-trained by these LLMs allows for the potential to capture a more profound semantic representation from different contextual information of users and items. While the great potential lies behind the thriving of LLMs, the challenge of leveraging user-item preferences from contextual information and its alignment with the improvement of Recommender Systems needs to be addressed. Believing that a better understanding of the user or item itself can be the key factor in improving recommendation performance, we conduct research on generating informative profiles using state-of-the-art LLMs. To boost the linguistic abilities of LLMs in Recommender Systems, we introduce the Prompting-Based Representation Learning Method for Recommendation (P4R). In our P4R framework, we utilize the LLM prompting strategy to create personalized item profiles. These profiles are then transformed into semantic representation spaces using a pre-trained BERT model for text embedding. Furthermore, we incorporate a Graph Convolution Network (GCN) for collaborative filtering representation. The P4R framework aligns these two embedding spaces in order to address the general recommendation tasks. In our evaluation, we compare P4R with state-of-the-art Recommender models and assess the quality of prompt-based profile generation.
Despite being widely applied due to their exceptional capabilities, Large Language Models (LLMs) have been proven to be vulnerable to backdoor attacks. These attacks introduce targeted vulnerabilities into LLMs by poisoning training samples and full-parameter fine-tuning. However, this kind of backdoor attack is limited since they require significant computational resources, especially as the size of LLMs increases. Besides, parameter-efficient fine-tuning (PEFT) offers an alternative but the restricted parameter updating may impede the alignment of triggers with target labels. In this study, we first verify that backdoor attacks with PEFT may encounter challenges in achieving feasible performance. To address these issues and improve the effectiveness of backdoor attacks with PEFT, we propose a novel backdoor attack algorithm from weak to strong based on contrastive knowledge distillation (W2SAttack). Specifically, we poison small-scale language models through full-parameter fine-tuning to serve as the teacher model. The teacher model then covertly transfers the backdoor to the large-scale student model through contrastive knowledge distillation, which employs PEFT. Theoretical analysis reveals that W2SAttack has the potential to augment the effectiveness of backdoor attacks. We demonstrate the superior performance of W2SAttack on classification tasks across four language models, four backdoor attack algorithms, and two different architectures of teacher models. Experimental results indicate success rates close to 100% for backdoor attacks targeting PEFT.
We present a technique for approximating solutions to the spectral fractional Laplacian, which is based on the Caffarelli-Silvestre extension and diagonalization. Our scheme uses the analytic solution to the associated eigenvalue problem in the extended dimension. We show its relation to a quadrature scheme. Numerical examples demonstrate the performance of the method.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.