In recent years, Recommender Systems (RS) have witnessed a transformative shift with the advent of Large Language Models (LLMs) in the field of Natural Language Processing (NLP). Models such as GPT-3.5/4, Llama, have demonstrated unprecedented capabilities in understanding and generating human-like text. The extensive information pre-trained by these LLMs allows for the potential to capture a more profound semantic representation from different contextual information of users and items. While the great potential lies behind the thriving of LLMs, the challenge of leveraging user-item preferences from contextual information and its alignment with the improvement of Recommender Systems needs to be addressed. Believing that a better understanding of the user or item itself can be the key factor in improving recommendation performance, we conduct research on generating informative profiles using state-of-the-art LLMs. To boost the linguistic abilities of LLMs in Recommender Systems, we introduce the Prompting-Based Representation Learning Method for Recommendation (P4R). In our P4R framework, we utilize the LLM prompting strategy to create personalized item profiles. These profiles are then transformed into semantic representation spaces using a pre-trained BERT model for text embedding. Furthermore, we incorporate a Graph Convolution Network (GCN) for collaborative filtering representation. The P4R framework aligns these two embedding spaces in order to address the general recommendation tasks. In our evaluation, we compare P4R with state-of-the-art Recommender models and assess the quality of prompt-based profile generation.
Recent advancements in Generative AI, particularly in Large Language Models (LLMs) and Large Vision-Language Models (LVLMs), offer new possibilities for integrating cognitive planning into robotic systems. In this work, we present a novel framework for solving the object goal navigation problem that generates efficient exploration strategies. Our approach enables a robot to navigate unfamiliar environments by leveraging LLMs and LVLMs to understand the semantic structure of the scene. To address the challenge of representing complex environments without overwhelming the system, we propose a 3D modular scene representation, enriched with semantic descriptions. This representation is dynamically pruned using an LLM-based mechanism, which filters irrelevant information and focuses on task-specific data. By combining these elements, our system generates high-level sub-goals that guide the exploration of the robot toward the target object. We validate our approach in simulated environments, demonstrating its ability to enhance object search efficiency while maintaining scalability in complex settings.
Preference optimization, particularly through Reinforcement Learning from Human Feedback (RLHF), has achieved significant success in aligning Large Language Models (LLMs) to adhere to human intentions. Unlike offline alignment with a fixed dataset, online feedback collection from humans or AI on model generations typically leads to more capable reward models and better-aligned LLMs through an iterative process. However, achieving a globally accurate reward model requires systematic exploration to generate diverse responses that span the vast space of natural language. Random sampling from standard reward-maximizing LLMs alone is insufficient to fulfill this requirement. To address this issue, we propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions. By solving the inner-level problem with the reparameterized reward function, the resulting algorithm, named Self-Exploring Language Models (SELM), eliminates the need for a separate RM and iteratively updates the LLM with a straightforward objective. Compared to Direct Preference Optimization (DPO), the SELM objective reduces indiscriminate favor of unseen extrapolations and enhances exploration efficiency. Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, SELM significantly boosts the performance on instruction-following benchmarks such as MT-Bench and AlpacaEval 2.0, as well as various standard academic benchmarks in different settings. Our code and models are available at //github.com/shenao-zhang/SELM.
Recent advances in Large Language Models (LLMs) have demonstrated significant potential in the field of Recommendation Systems (RSs). Most existing studies have focused on converting user behavior logs into textual prompts and leveraging techniques such as prompt tuning to enable LLMs for recommendation tasks. Meanwhile, research interest has recently grown in multimodal recommendation systems that integrate data from images, text, and other sources using modality fusion techniques. This introduces new challenges to the existing LLM-based recommendation paradigm which relies solely on text modality information. Moreover, although Multimodal Large Language Models (MLLMs) capable of processing multi-modal inputs have emerged, how to equip MLLMs with multi-modal recommendation capabilities remains largely unexplored. To this end, in this paper, we propose the Multimodal Large Language Model-enhanced Multimodaln Sequential Recommendation (MLLM-MSR) model. To capture the dynamic user preference, we design a two-stage user preference summarization method. Specifically, we first utilize an MLLM-based item-summarizer to extract image feature given an item and convert the image into text. Then, we employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences based on an LLM-based user-summarizer. Finally, to enable the MLLM for multi-modal recommendation task, we propose to fine-tune a MLLM-based recommender using Supervised Fine-Tuning (SFT) techniques. Extensive evaluations across various datasets validate the effectiveness of MLLM-MSR, showcasing its superior ability to capture and adapt to the evolving dynamics of user preferences.
Binary self-dual cyclic codes have been studied since the classical work of Sloane and Thompson published in IEEE Trans. Inf. Theory, vol. 29, 1983. Twenty five years later, an infinite family of binary self-dual cyclic codes with lengths $n_i$ and minimum distances $d_i \geq \frac{1}{2} \sqrt{n_i+2}$ was presented in a paper of IEEE Trans. Inf. Theory, vol. 55, 2009. However, no infinite family of Euclidean self-dual binary cyclic codes whose minimum distances have the square-root lower bound and no infinite family of Euclidean self-dual nonbinary cyclic codes whose minimum distances have a lower bound better than the square-root lower bound are known in the literature. In this paper, an infinite family of Euclidean self-dual cyclic codes over the fields ${\bf F}_{2^s}$ with a square-root-like lower bound is constructed. An infinite subfamily of this family consists of self-dual binary cyclic codes with the square-root lower bound. Another infinite subfamily of this family consists of self-dual cyclic codes over the fields ${\bf F}_{2^s}$ with a lower bound better than the square-root bound for $s \geq 2$. Consequently, two breakthroughs in coding theory are made in this paper. An infinite family of self-dual binary cyclic codes with a square-root-like lower bound is also presented in this paper. An infinite family of Hermitian self-dual cyclic codes over the fields ${\bf F}_{2^{2s}}$ with a square-root-like lower bound and an infinite family of Euclidean self-dual linear codes over ${\bf F}_{q}$ with $q \equiv 1 \pmod{4}$ with a square-root-like lower bound are also constructed in this paper.
In recent years, trace generation has emerged as a significant challenge within the Process Mining community. Deep Learning (DL) models have demonstrated accuracy in reproducing the features of the selected processes. However, current DL generative models are limited in their ability to adapt the learned distributions to generate data samples based on specific conditions or attributes. This limitation is particularly significant because the ability to control the type of generated data can be beneficial in various contexts, enabling a focus on specific behaviours, exploration of infrequent patterns, or simulation of alternative 'what-if' scenarios. In this work, we address this challenge by introducing a conditional model for process data generation based on a conditional variational autoencoder (CVAE). Conditional models offer control over the generation process by tuning input conditional variables, enabling more targeted and controlled data generation. Unlike other domains, CVAE for process mining faces specific challenges due to the multiperspective nature of the data and the need to adhere to control-flow rules while ensuring data variability. Specifically, we focus on generating process executions conditioned on control flow and temporal features of the trace, allowing us to produce traces for specific, identified sub-processes. The generated traces are then evaluated using common metrics for generative model assessment, along with additional metrics to evaluate the quality of the conditional generation
The passive and frequency-flat reflection of IRS, as well as the high-dimensional IRS-reflected channels, have posed significant challenges for efficient IRS channel estimation, especially in wideband communication systems with significant multi-path channel delay spread. To address these challenges, we propose a novel neural network (NN)-empowered framework for IRS channel autocorrelation matrix estimation in wideband orthogonal frequency division multiplexing (OFDM) systems. This framework relies only on the easily accessible reference signal received power (RSRP) measurements at users in existing wideband communication systems, without requiring additional pilot transmission. Based on the estimates of channel autocorrelation matrix, the passive reflection of IRS is optimized to maximize the average user received signal-to-noise ratio (SNR) over all subcarriers in the OFDM system. Numerical results verify that the proposed algorithm significantly outperforms existing powermeasurement-based IRS reflection designs in wideband channels.
Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally and shares only model updates. However, FL is vulnerable to privacy threats like model inversion and membership inference attacks, which can expose sensitive training data. To address these privacy concerns, Differential Privacy (DP) mechanisms are often applied. Yet, adding DP noise to black-box ML models degrades performance, especially in dynamic IoT systems where continuous, lifelong FL learning accumulates excessive noise over time. To mitigate this issue, we introduce Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that combines the neuro-symbolic paradigm with DP. FedHDPrivacy carefully manages the balance between privacy and performance by theoretically tracking cumulative noise from previous rounds and adding only the necessary incremental noise to meet privacy requirements. In a real-world case study involving in-process monitoring of manufacturing machining operations, FedHDPrivacy demonstrates robust performance, outperforming standard FL frameworks-including Federated Averaging (FedAvg), Federated Stochastic Gradient Descent (FedSGD), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Adam (FedAdam)-by up to 38%. FedHDPrivacy also shows potential for future enhancements, such as multimodal data fusion.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.