The use of nonlinear PDEs has led to significant advancements in various fields, such as physics, biology, ecology, and quantum mechanics. However, finding multiple solutions for nonlinear PDEs can be a challenging task, especially when suitable initial guesses are difficult to obtain. In this paper, we introduce a novel approach called the Companion-Based Multilevel finite element method (CBMFEM), which can efficiently and accurately generate multiple initial guesses for solving nonlinear elliptic semi-linear equations with polynomial nonlinear terms using finite element methods with conforming elements. We provide a theoretical analysis of the error estimate of finite element methods using an appropriate notion of isolated solutions, for the nonlinear elliptic equation with multiple solutions and present numerical results obtained using CBMFEM which are consistent with the theoretical analysis.
We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a $\mathcal{C}^2$ boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach.
The equilibrium configuration of a plasma in an axially symmetric reactor is described mathematically by a free boundary problem associated with the celebrated Grad--Shafranov equation. The presence of uncertainty in the model parameters introduces the need to quantify the variability in the predictions. This is often done by computing a large number of model solutions on a computational grid for an ensemble of parameter values and then obtaining estimates for the statistical properties of solutions. In this study, we explore the savings that can be obtained using multilevel Monte Carlo methods, which reduce costs by performing the bulk of the computations on a sequence of spatial grids that are coarser than the one that would typically be used for a simple Monte Carlo simulation. We examine this approach using both a set of uniformly refined grids and a set of adaptively refined grids guided by a discrete error estimator. Numerical experiments show that multilevel methods dramatically reduce the cost of simulation, with cost reductions typically on the order of 60 or more and possibly as large as 200. Adaptive gridding results in more accurate computation of geometric quantities such as x-points associated with the model.
In this work, we present a generic step-size choice for the ADMM type proximal algorithms. It admits a closed-form expression and is theoretically optimal with respect to a worst-case convergence rate bound. It is simply given by the ratio of Euclidean norms of the dual and primal solutions, i.e., $ ||{\lambda}^\star|| / ||{x}^\star||$. Numerical tests show that its practical performance is near-optimal in general. The only challenge is that such a ratio is not known a priori and we provide two strategies to address it. The derivation of our step-size choice is based on studying the fixed-point structure of ADMM using the proximal operator. However, we demonstrate that the classical proximal operator definition contains an input scaling issue. This leads to a scaled step-size optimization problem which would yield a false solution. Such an issue is naturally avoided by our proposed new definition of the proximal operator. A series of its properties is established.
Many multivariate data sets exhibit a form of positive dependence, which can either appear globally between all variables or only locally within particular subgroups. A popular notion of positive dependence that allows for localized positivity is positive association. In this work we introduce the notion of extremal positive association for multivariate extremes from threshold exceedances. Via a sufficient condition for extremal association, we show that extremal association generalizes extremal tree models. For H\"usler--Reiss distributions the sufficient condition permits a parametric description that we call the metric property. As the parameter of a H\"usler--Reiss distribution is a Euclidean distance matrix, the metric property relates to research in electrical network theory and Euclidean geometry. We show that the metric property can be localized with respect to a graph and study surrogate likelihood inference. This gives rise to a two-step estimation procedure for locally metrical H\"usler--Reiss graphical models. The second step allows for a simple dual problem, which is implemented via a gradient descent algorithm. Finally, we demonstrate our results on simulated and real data.
Deep learning methods have gained considerable interest in the numerical solution of various partial differential equations (PDEs). One particular focus is on physics-informed neural networks (PINNs), which integrate physical principles into neural networks. This transforms the process of solving PDEs into optimization problems for neural networks. In order to address a collection of advection-diffusion equations (ADE) in a range of difficult circumstances, this paper proposes a novel network structure. This architecture integrates the solver, which is a multi-scale deep neural network (MscaleDNN) utilized in the PINN method, with a hard constraint technique known as HCPINN. This method introduces a revised formulation of the desired solution for advection-diffusion equations (ADE) by utilizing a loss function that incorporates the residuals of the governing equation and penalizes any deviations from the specified boundary and initial constraints. By surpassing the boundary constraints automatically, this method improves the accuracy and efficiency of the PINN technique. To address the ``spectral bias'' phenomenon in neural networks, a subnetwork structure of MscaleDNN and a Fourier-induced activation function are incorporated into the HCPINN, resulting in a hybrid approach called SFHCPINN. The effectiveness of SFHCPINN is demonstrated through various numerical experiments involving advection-diffusion equations (ADE) in different dimensions. The numerical results indicate that SFHCPINN outperforms both standard PINN and its subnetwork version with Fourier feature embedding. It achieves remarkable accuracy and efficiency while effectively handling complex boundary conditions and high-frequency scenarios in ADE.
In this paper we present a new H(div)-conforming unfitted finite element method for the mixed Poisson problem which is robust in the cut configuration and preserves conservation properties of body-fitted finite element methods. The key is to formulate the divergence-constraint on the active mesh, instead of the physical domain, in order to obtain robustness with respect to cut configurations without the need for a stabilization that pollutes the mass balance. This change in the formulation results in a slight inconsistency, but does not affect the accuracy of the flux variable. By applying post-processings for the scalar variable, in virtue of classical local post-processings in body-fitted methods, we retain optimal convergence rates for both variables and even the superconvergence after post-processing of the scalar variable. We present the method and perform a rigorous a-priori error analysis of the method and discuss several variants and extensions. Numerical experiments confirm the theoretical results.
We present implicit and explicit versions of a numerical algorithm for solving a Volterra integro-differential equation. These algorithms are an extension of our previous work, and cater for a kernel of general form. We use an appropriate test equation to study the stability of both algorithms,, numerically deriving stability regions. The region for the implicit method appears to be unbounded, while the explicit has a bounded region close to the origin. We perform a few calculations to demonstrate our results.
Stochastic optimization has found wide applications in minimizing objective functions in machine learning, which motivates a lot of theoretical studies to understand its practical success. Most of existing studies focus on the convergence of optimization errors, while the generalization analysis of stochastic optimization is much lagging behind. This is especially the case for nonconvex and nonsmooth problems often encountered in practice. In this paper, we initialize a systematic stability and generalization analysis of stochastic optimization on nonconvex and nonsmooth problems. We introduce novel algorithmic stability measures and establish their quantitative connection on the gap between population gradients and empirical gradients, which is then further extended to study the gap between the Moreau envelope of the empirical risk and that of the population risk. To our knowledge, these quantitative connection between stability and generalization in terms of either gradients or Moreau envelopes have not been studied in the literature. We introduce a class of sampling-determined algorithms, for which we develop bounds for three stability measures. Finally, we apply these discussions to derive error bounds for stochastic gradient descent and its adaptive variant, where we show how to achieve an implicit regularization by tuning the step sizes and the number of iterations.
Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.
The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.