亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mil2 pushes the performance of high-resolution cloth simulation, making the simulation interactive (in milliseconds) for models with one million degrees of freedom (DOFs) while keeping every triangle untangled. The guarantee of being penetration-free is inspired by the interior-point method, which converts the inequality constraints to barrier potentials. Nevertheless, we propose a major overhaul of this modality by defining a novel and simple barrier formulation which does not depend on the distance between mesh primitives. Such a non-distance barrier model allows a new way to integrate collision detection into the simulation pipeline. Another contributor to the performance boost comes from the so-called subspace reuse strategy. This is based on the observation that low-frequency strain vibrations are near orthogonal to the deformation induced by collisions or self-collisions, often of high frequency. Subspace reuse then takes care of low-frequency residuals, while high-frequency residuals can also be effectively smoothed by GPU-based iterative solvers. We show that our method outperforms existing fast cloth simulators by nearly one order while keeping the entire simulation penetration-free and producing high-equality animations of high-resolution models.

相關內容

Creating and customizing a 3D clothed avatar from textual descriptions is a critical and challenging task. Traditional methods often treat the human body and clothing as inseparable, limiting users' ability to freely mix and match garments. In response to this limitation, we present LAyered Gaussian Avatar (LAGA), a carefully designed framework enabling the creation of high-fidelity decomposable avatars with diverse garments. By decoupling garments from avatar, our framework empowers users to conviniently edit avatars at the garment level. Our approach begins by modeling the avatar using a set of Gaussian points organized in a layered structure, where each layer corresponds to a specific garment or the human body itself. To generate high-quality garments for each layer, we introduce a coarse-to-fine strategy for diverse garment generation and a novel dual-SDS loss function to maintain coherence between the generated garments and avatar components, including the human body and other garments. Moreover, we introduce three regularization losses to guide the movement of Gaussians for garment transfer, allowing garments to be freely transferred to various avatars. Extensive experimentation demonstrates that our approach surpasses existing methods in the generation of 3D clothed humans.

Anomaly detection in time series analysis is a pivotal task, yet it poses the challenge of discerning normal and abnormal patterns in label-deficient scenarios. While prior studies have largely employed reconstruction-based approaches, which limits the models' representational capacities. Moreover, existing deep learning-based methods are not sufficiently lightweight. Addressing these issues, we present PatchAD, our novel, highly efficient multiscale patch-based MLP-Mixer architecture that utilizes contrastive learning for representation extraction and anomaly detection. With its four distinct MLP Mixers and innovative dual project constraint module, PatchAD mitigates potential model degradation and offers a lightweight solution, requiring only $3.2$MB. Its efficacy is demonstrated by state-of-the-art results across $9$ datasets sourced from different application scenarios, outperforming over $30$ comparative algorithms. PatchAD significantly improves the classical F1 score by $50.5\%$, the Aff-F1 score by $7.8\%$, and the AUC by $10.0\%$. The code is publicly available. \url{//github.com/EmorZz1G/PatchAD}

Existing representation-based methods usually conduct industrial anomaly detection in two stages: obtain feature representations with a pre-trained model and perform distance measures for anomaly detection. Among them, K-nearest neighbor (KNN) retrieval-based anomaly detection methods show promising results. However, the features are not fully exploited as these methods ignore domain bias of pre-trained models and the difference of local density in feature space, which limits the detection performance. In this paper, we propose Reducing Biases (REB) in representation by considering the domain bias and building a self-supervised learning task for better domain adaption with a defect generation strategy (DefectMaker) that ensures a strong diversity in the synthetic defects. Additionally, we propose a local-density KNN (LDKNN) to reduce the local density bias in the feature space and obtain effective anomaly detection. The proposed REB method achieves a promising result of 99.5\% Im.AUROC on the widely used MVTec AD, with smaller backbone networks such as Vgg11 and Resnet18. The method also achieves an impressive 88.8\% Im.AUROC on the MVTec LOCO AD dataset and a remarkable 96.0\% on the BTAD dataset, outperforming other representation-based approaches. These results indicate the effectiveness and efficiency of REB for practical industrial applications. Code://github.com/ShuaiLYU/REB.

LLM watermarking, which embeds imperceptible yet algorithmically detectable signals in model outputs to identify LLM-generated text, has become crucial in mitigating the potential misuse of large language models. However, the abundance of LLM watermarking algorithms, their intricate mechanisms, and the complex evaluation procedures and perspectives pose challenges for researchers and the community to easily experiment with, understand, and assess the latest advancements. To address these issues, we introduce MarkLLM, an open-source toolkit for LLM watermarking. MarkLLM offers a unified and extensible framework for implementing LLM watermarking algorithms, while providing user-friendly interfaces to ensure ease of access. Furthermore, it enhances understanding by supporting automatic visualization of the underlying mechanisms of these algorithms. For evaluation, MarkLLM offers a comprehensive suite of 12 tools spanning three perspectives, along with two types of automated evaluation pipelines. Through MarkLLM, we aim to support researchers while improving the comprehension and involvement of the general public in LLM watermarking technology, fostering consensus and driving further advancements in research and application. Our code is available at //github.com/THU-BPM/MarkLLM.

Learning-based approaches to cloth simulation have started to show their potential in recent years. However, handling collisions and intersections in neural simulations remains a largely unsolved problem. In this work, we present \moniker{}, a learning-based solution for handling intersections in neural cloth simulations. Unlike conventional approaches that critically rely on intersection-free inputs, \moniker{} robustly recovers from intersections introduced through missed collisions, self-penetrating bodies, or errors in manually designed multi-layer outfits. The technical core of \moniker{} is a novel intersection contour loss that penalizes interpenetrations and encourages rapid resolution thereof. We integrate our intersection loss with a collision-avoiding repulsion objective into a neural cloth simulation method based on graph neural networks (GNNs). We demonstrate our method's ability across a challenging set of diverse multi-layer outfits under dynamic human motions. Our extensive analysis indicates that \moniker{} significantly improves collision handling for learned simulation and produces visually compelling results.

Fraud detection remains a challenging task due to the complex and deceptive nature of fraudulent activities. Current approaches primarily concentrate on learning only one perspective of the graph: either the topological structure of the graph or the attributes of individual nodes. However, we conduct empirical studies to reveal that these two types of features, while nearly orthogonal, are each independently effective. As a result, previous methods can not fully capture the comprehensive characteristics of the fraud graph. To address this dilemma, we present a novel framework called Relation-Aware GNN with transFormer~(RAGFormer) which simultaneously embeds both semantic and topological features into a target node. The simple yet effective network consists of a semantic encoder, a topology encoder, and an attention fusion module. The semantic encoder utilizes Transformer to learn semantic features and node interactions across different relations. We introduce Relation-Aware GNN as the topology encoder to learn topological features and node interactions within each relation. These two complementary features are interleaved through an attention fusion module to support prediction by both orthogonal features. Extensive experiments on two popular public datasets demonstrate that RAGFormer achieves state-of-the-art performance. The significant improvement of RAGFormer in an industrial credit card fraud detection dataset further validates the applicability of our method in real-world business scenarios.

Deep learning classifiers are prone to latching onto dominant confounders present in a dataset rather than on the causal markers associated with the target class, leading to poor generalization and biased predictions. Although explainability via counterfactual image generation has been successful at exposing the problem, bias mitigation strategies that permit accurate explainability in the presence of dominant and diverse artifacts remain unsolved. In this work, we propose the DeCoDEx framework and show how an external, pre-trained binary artifact detector can be leveraged during inference to guide a diffusion-based counterfactual image generator towards accurate explainability. Experiments on the CheXpert dataset, using both synthetic artifacts and real visual artifacts (support devices), show that the proposed method successfully synthesizes the counterfactual images that change the causal pathology markers associated with Pleural Effusion while preserving or ignoring the visual artifacts. Augmentation of ERM and Group-DRO classifiers with the DeCoDEx generated images substantially improves the results across underrepresented groups that are out of distribution for each class. The code is made publicly available at //github.com/NimaFathi/DeCoDEx.

Despite their prevalence in deep-learning communities, over-parameterized models convey high demands of computational costs for proper training. This work studies the fine-grained, modular-level learning dynamics of over-parameterized models to attain a more efficient and fruitful training strategy. Empirical evidence reveals that when scaling down into network modules, such as heads in self-attention models, we can observe varying learning patterns implicitly associated with each module's trainability. To describe such modular-level learning capabilities, we introduce a novel concept dubbed modular neural tangent kernel (mNTK), and we demonstrate that the quality of a module's learning is tightly associated with its mNTK's principal eigenvalue $\lambda_{\max}$. A large $\lambda_{\max}$ indicates that the module learns features with better convergence, while those miniature ones may impact generalization negatively. Inspired by the discovery, we propose a novel training strategy termed Modular Adaptive Training (MAT) to update those modules with their $\lambda_{\max}$ exceeding a dynamic threshold selectively, concentrating the model on learning common features and ignoring those inconsistent ones. Unlike most existing training schemes with a complete BP cycle across all network modules, MAT can significantly save computations by its partially-updating strategy and can further improve performance. Experiments show that MAT nearly halves the computational cost of model training and outperforms the accuracy of baselines.

To solve complex tasks under resource constraints, reinforcement learning (RL) agents need to be simple, efficient, and scalable, addressing (1) large state spaces and (2) the continuous accumulation of interaction data. We propose HyperAgent, an RL framework featuring the hypermodel and index sampling schemes that enable computation-efficient incremental approximation for the posteriors associated with general value functions without the need for conjugacy, and data-efficient action selection. Implementing HyperAgent is straightforward, requiring only one additional module beyond what is necessary for Double-DQN. HyperAgent stands out as the first method to offer robust performance in large-scale deep RL benchmarks while achieving provably scalable per-step computational complexity and attaining sublinear regret under tabular assumptions. HyperAgent can solve Deep Sea hard exploration problems with episodes that optimally scale with problem size and exhibits significant efficiency gains in both data and computation under the Atari benchmark. The core of our theoretical analysis is the sequential posterior approximation argument, enabled by the first analytical tool for sequential random projection -- a non-trivial martingale extension of the Johnson-Lindenstrauss. This work bridges the theoretical and practical realms of RL, establishing a new benchmark for RL algorithm design.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

北京阿比特科技有限公司