亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Lossy compression is one of the most effective methods for reducing the size of scientific data containing multiple data fields. It reduces information density through prediction or transformation techniques to compress the data. Previous approaches use local information from a single target field when predicting target data points, limiting their potential to achieve higher compression ratios. In this paper, we identified significant cross-field correlations within scientific datasets. We propose a novel hybrid prediction model that utilizes CNN to extract cross-field information and combine it with existing local field information. Our solution enhances the prediction accuracy of lossy compressors, leading to improved compression ratios without compromising data quality. We evaluate our solution on three scientific datasets, demonstrating its ability to improve compression ratios by up to 25% under specific error bounds. Additionally, our solution preserves more data details and reduces artifacts compared to baseline approaches.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 近似 · 估計/估計量 · 樣本復雜度 · Ray ·
2024 年 11 月 5 日

We consider the problem of estimating the spectrum of a symmetric bounded entry (not necessarily PSD) matrix via entrywise sampling. This problem was introduced by [Bhattacharjee, Dexter, Drineas, Musco, Ray '22], where it was shown that one can obtain an $\epsilon n$ additive approximation to all eigenvalues of $A$ by sampling a principal submatrix of dimension $\frac{\text{poly}(\log n)}{\epsilon^3}$. We improve their analysis by showing that it suffices to sample a principal submatrix of dimension $\tilde{O}(\frac{1}{\epsilon^2})$ (with no dependence on $n$). This matches known lower bounds and therefore resolves the sample complexity of this problem up to $\log\frac{1}{\epsilon}$ factors. Using similar techniques, we give a tight $\tilde{O}(\frac{1}{\epsilon^2})$ bound for obtaining an additive $\epsilon\|A\|_F$ approximation to the spectrum of $A$ via squared row-norm sampling, improving on the previous best $\tilde{O}(\frac{1}{\epsilon^{8}})$ bound. We also address the problem of approximating the top eigenvector for a bounded entry, PSD matrix $A.$ In particular, we show that sampling $O(\frac{1}{\epsilon})$ columns of $A$ suffices to produce a unit vector $u$ with $u^T A u \geq \lambda_1(A) - \epsilon n$. This matches what one could achieve via the sampling bound of [Musco, Musco'17] for the special case of approximating the top eigenvector, but does not require adaptivity. As additional applications, we observe that our sampling results can be used to design a faster eigenvalue estimation sketch for dense matrices resolving a question of [Swartworth, Woodruff'23], and can also be combined with [Musco, Musco'17] to achieve $O(1/\epsilon^3)$ (adaptive) sample complexity for approximating the spectrum of a bounded entry PSD matrix to $\epsilon n$ additive error.

Federated Graph Learning (FGL) aims to collaboratively and privately optimize graph models on divergent data for different tasks. A critical challenge in FGL is to enable effective yet efficient federated optimization against multifaceted graph heterogeneity to enhance mutual performance. However, existing FGL works primarily address graph data heterogeneity and perform incapable of graph task heterogeneity. To address the challenge, we propose a Federated Graph Prompt Learning (FedGPL) framework to efficiently enable prompt-based asymmetric graph knowledge transfer between multifaceted heterogeneous federated participants. Generally, we establish a split federated framework to preserve universal and domain-specific graph knowledge, respectively. Moreover, we develop two algorithms to eliminate task and data heterogeneity for advanced federated knowledge preservation. First, a Hierarchical Directed Transfer Aggregator (HiDTA) delivers cross-task beneficial knowledge that is hierarchically distilled according to the directional transferability. Second, a Virtual Prompt Graph (VPG) adaptively generates graph structures to enhance data utility by distinguishing dominant subgraphs and neutralizing redundant ones. We conduct theoretical analyses and extensive experiments to demonstrate the significant accuracy and efficiency effectiveness of FedGPL against multifaceted graph heterogeneity compared to state-of-the-art baselines on large-scale federated graph datasets.

We present a novel algorithm for real-time planar semantic mapping tailored for humanoid robots navigating complex terrains such as staircases. Our method is adaptable to any odometry input and leverages GPU-accelerated processes for planar extraction, enabling the rapid generation of globally consistent semantic maps. We utilize an anisotropic diffusion filter on depth images to effectively minimize noise from gradient jumps while preserving essential edge details, enhancing normal vector images' accuracy and smoothness. Both the anisotropic diffusion and the RANSAC-based plane extraction processes are optimized for parallel processing on GPUs, significantly enhancing computational efficiency. Our approach achieves real-time performance, processing single frames at rates exceeding $30~Hz$, which facilitates detailed plane extraction and map management swiftly and efficiently. Extensive testing underscores the algorithm's capabilities in real-time scenarios and demonstrates its practical application in humanoid robot gait planning, significantly improving its ability to navigate dynamic environments.

Gaussian graphical regressions have emerged as a powerful approach for regressing the precision matrix of a Gaussian graphical model on covariates, which, unlike traditional Gaussian graphical models, can help determine how graphs are modulated by high dimensional subject-level covariates, and recover both the population-level and subject-level graphs. To fit the model, a multi-task learning approach {achieves} %has been shown to result in lower error rates compared to node-wise regressions. However, due to the high complexity and dimensionality of the Gaussian graphical regression problem, the important task of statistical inference remains unexplored. We propose a class of debiased estimators based on multi-task learners for statistical inference in Gaussian graphical regressions. We show that debiasing can be performed quickly and separately for the multi-task learners. In a key debiasing step {that estimates} %involving the estimation of the inverse covariance matrix, we propose a novel {projection technique} %diagonalization approach that dramatically reduces computational costs {in optimization} to scale only with the sample size $n$. We show that our debiased estimators enjoy a fast convergence rate and asymptotically follow a normal distribution, enabling valid statistical inference such as constructing confidence intervals and performing hypothesis testing. Simulation studies confirm the practical utility of the proposed approach, and we further apply it to analyze gene co-expression graph data from a brain cancer study, revealing meaningful biological relationships.

The paper formalizes a version of parallel online directed acyclic graph (DAG) exploration, general enough to be readily mapped to many computational scenarios. In both the offline and online versions, vertices are weighted with the work units required for their processing, at least one parent must be completely processed before a child is processed, and at any given time only one processor can work on any given vertex. The online version has the following additional natural restriction: only after a vertex is processed, are its required work units or its children known. Using the Actor Model of parallel computation, it is shown that a natural class of parallel online algorithms meets a simple competitive ratio bound. We demonstrate and focus on the problem's occurrence in the scenario of energy landscape roadmapping or atlasing under pair-potentials, a highly compute-and-storage intensive modeling component integral to diverse applications involving soft-matter assembly. The method is experimentally validated using a C++ Actor Framework (CAF) software implementation built atop EASAL (Efficient Atlasing and Search of Assembly Landscapes), a substantial opensource software suite, running on multiple CPU cores of the HiperGator supercomputer, demonstrating linear speedup results.

Using statistical learning methods to analyze stochastic simulation outputs can significantly enhance decision-making by uncovering relationships between different simulated systems and between a system's inputs and outputs. We focus on clustering multivariate empirical distributions of simulation outputs to identify patterns and trade-offs among performance measures. We present a novel agglomerative clustering algorithm that utilizes the regularized Wasserstein distance to cluster these multivariate empirical distributions. This framework has several important use cases, including anomaly detection, pre-optimization, and online monitoring. In numerical experiments involving a call-center model, we demonstrate how this methodology can identify staffing plans that yield similar performance outcomes and inform policies for intervening when queue lengths signal potentially worsening system performance.

The prevalence of vector similarity search in modern machine learning applications and the continuously changing nature of data processed by these applications necessitate efficient and effective index maintenance techniques for vector search indexes. Designed primarily for static workloads, existing vector search indexes degrade in search quality and performance as the underlying data is updated unless costly index reconstruction is performed. To address this, we introduce Ada-IVF, an incremental indexing methodology for Inverted File (IVF) indexes. Ada-IVF consists of 1) an adaptive maintenance policy that decides which index partitions are problematic for performance and should be repartitioned and 2) a local re-clustering mechanism that determines how to repartition them. Compared with state-of-the-art dynamic IVF index maintenance strategies, Ada-IVF achieves an average of 2x and up to 5x higher update throughput across a range of benchmark workloads.

Adaptive Mixed-Criticality (AMC) is a fixed-priority preemptive scheduling algorithm for mixed-criticality hard real-time systems. It dominates many other scheduling algorithms for mixed-criticality systems, but does so at the cost of occasionally dropping jobs of less important/critical tasks, when low-priority jobs overrun their time budgets. In this paper we enhance AMC with a deep reinforcement learning (DRL) approach based on a Deep-Q Network. The DRL agent is trained off-line, and at run-time adjusts the low-criticality budgets of tasks to avoid budget overruns, while ensuring that no job misses its deadline if it does not overrun its budget. We have implemented and evaluated this approach by simulating realistic workloads from the automotive domain. The results show that the agent is able to reduce budget overruns by at least up to 50%, even when the budget of each task is chosen based on sampling the distribution of its execution time. To the best of our knowledge, this is the first use of DRL in AMC reported in the literature.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司