In this paper we present a new H(div)-conforming unfitted finite element method for the mixed Poisson problem which is robust in the cut configuration and preserves conservation properties of body-fitted finite element methods. The key is to formulate the divergence-constraint on the active mesh, instead of the physical domain, in order to obtain robustness with respect to cut configurations without the need for a stabilization that pollutes the mass balance. This change in the formulation results in a slight inconsistency, but does not affect the accuracy of the flux variable. By applying post-processings for the scalar variable, in virtue of classical local post-processings in body-fitted methods, we retain optimal convergence rates for both variables and even the superconvergence after post-processing of the scalar variable. We present the method and perform a rigorous a-priori error analysis of the method and discuss several variants and extensions. Numerical experiments confirm the theoretical results.
We study two fully discrete evolving surface finite element schemes for the Cahn-Hilliard equation on an evolving surface, given a smooth potential with polynomial growth. In particular we establish optimal order error bounds for a (fully implicit) backward Euler time-discretisation, and an implicit-explicit time-discretisation, with isoparametric surface finite elements discretising space.
This work introduces a stabilised finite element formulation for the Stokes flow problem with a nonlinear slip boundary condition of friction type. The boundary condition is enforced with the help of an additional Lagrange multiplier and the stabilised formulation is based on simultaneously stabilising both the pressure and the Lagrange multiplier. We establish the stability and the a priori error analyses, and perform a numerical convergence study in order to verify the theory.
In this paper, we construct and analyze new first- and second-order implicit-explicit (IMEX) schemes for the unsteady Navier-Stokes-Darcy model to describe the coupled free flow-porous media system, which is based on the scalar auxiliary variable (SAV) approach in time and finite element method in space. The constructed schemes are linear, only require solving a sequence of linear differential equations with constant coefficients at each time step, and can decouple the Navier-Stokes and Darcy systems. The unconditional stability of both the first- and second-order IMEX schemes can be derived for the coupled system equipped with the Lions interface condition, where the key point is that we should construct a new trilinear form to balance the fully explicit discretizations of the nonlinear terms in the complex system. We can also establish rigorous error estimates for the velocity and hydraulic head of the first-order scheme without any time step restriction. Numerical examples are presented to validate the proposed schemes.
This paper proposes a new parameterized enhanced shift-splitting (PESS) preconditioner to solve the three-by-three block saddle point problem (SPP). Additionally, we introduce a local PESS (LPESS) preconditioner by relaxing the PESS preconditioner. Necessary and sufficient criteria are established for the convergence of the proposed PESS iterative process for any random initial guess. Furthermore, we meticulously investigate the spectral bounds of the PESS and LPESS preconditioned matrices. Moreover, empirical investigations have been performed for the sensitivity analysis of the proposed PESS preconditioner, which unveils its robustness. Numerical experiments are carried out to demonstrate the enhanced efficiency and robustness of the proposed PESS and LPESS preconditioners compared to the existing block diagonal and shift-splitting preconditioners.
We study three kinetic Langevin samplers including the Euler discretization, the BU and the UBU splitting scheme. We provide contraction results in $L^1$-Wasserstein distance for non-convex potentials. These results are based on a carefully tailored distance function and an appropriate coupling construction. Additionally, the error in the $L^1$-Wasserstein distance between the true target measure and the invariant measure of the discretization scheme is bounded. To get an $\varepsilon$-accuracy in $L^1$-Wasserstein distance, we show complexity guarantees of order $\mathcal{O}(\sqrt{d}/\varepsilon)$ for the Euler scheme and $\mathcal{O}(d^{1/4}/\sqrt{\varepsilon})$ for the UBU scheme under appropriate regularity assumptions on the target measure. The results are applicable to interacting particle systems and provide bounds for sampling probability measures of mean-field type.
We present a class of high-order Eulerian-Lagrangian Runge-Kutta finite volume methods that can numerically solve Burgers' equation with shock formations, which could be extended to general scalar conservation laws. Eulerian-Lagrangian (EL) and semi-Lagrangian (SL) methods have recently seen increased development and have become a staple for allowing large time-stepping sizes. Yet, maintaining relatively large time-stepping sizes post shock formation remains quite challenging. Our proposed scheme integrates the partial differential equation on a space-time region partitioned by linear approximations to the characteristics determined by the Rankine-Hugoniot jump condition. We trace the characteristics forward in time and present a merging procedure for the mesh cells to handle intersecting characteristics due to shocks. Following this partitioning, we write the equation in a time-differential form and evolve with Runge-Kutta methods in a method-of-lines fashion. High-resolution methods such as ENO and WENO-AO schemes are used for spatial reconstruction. Extension to higher dimensions is done via dimensional splitting. Numerical experiments demonstrate our scheme's high-order accuracy and ability to sharply capture post-shock solutions with large time-stepping sizes.
In the present paper, we introduce new tensor krylov subspace methods for solving large Sylvester tensor equations. The proposed method uses the well-known T-product for tensors and tensor subspaces. We introduce some new tensor products and the related algebraic properties. These new products will enable us to develop third-order the tensor FOM (tFOM), GMRES (tGMRES), tubal Block Arnoldi and the tensor tubal Block Arnoldi method to solve large Sylvester tensor equation. We give some properties related to these method and present some numerical experiments.
In this paper, a force-based beam finite element model based on a modified higher-order shear deformation theory is proposed for the accurate analysis of functionally graded beams. In the modified higher-order shear deformation theory, the distribution of transverse shear stress across the beam's thickness is obtained from the differential equilibrium equation, and a modified shear stiffness is derived to take the effect of transverse shear stress distribution into consideration. In the proposed beam element model, unlike traditional beam finite elements that regard generalized displacements as unknown fields, the internal forces are considered as the unknown fields, and they are predefined by using the closed-form solutions of the differential equilibrium equations of higher-order shear beam. Then, the generalized displacements are expressed by the internal forces with the introduction of geometric relations and constitutive equations, and the equation system of the beam element is constructed based on the equilibrium conditions at the boundaries and the compatibility condition within the element. Numerical examples underscore the accuracy and efficacy of the proposed higher-order beam element model in the static analysis of functionally graded sandwich beams, particularly in terms of true transverse shear stress distribution.
Within Bayesian nonparametrics, dependent Dirichlet process mixture models provide a highly flexible approach for conducting inference about the conditional density function. However, several formulations of this class make either rather restrictive modelling assumptions or involve intricate algorithms for posterior inference, thus preventing their widespread use. In response to these challenges, we present a flexible, versatile, and computationally tractable model for density regression based on a single-weights dependent Dirichlet process mixture of normal distributions model for univariate continuous responses. We assume an additive structure for the mean of each mixture component and incorporate the effects of continuous covariates through smooth nonlinear functions. The key components of our modelling approach are penalised B-splines and their bivariate tensor product extension. Our proposed method also seamlessly accommodates parametric effects of categorical covariates, linear effects of continuous covariates, interactions between categorical and/or continuous covariates, varying coefficient terms, and random effects, which is why we refer our model as a Dirichlet process mixture of normal structured additive regression models. A noteworthy feature of our method is its efficiency in posterior simulation through Gibbs sampling, as closed-form full conditional distributions for all model parameters are available. Results from a simulation study demonstrate that our approach successfully recovers true conditional densities and other regression functionals in various challenging scenarios. Applications to a toxicology, disease diagnosis, and agricultural study are provided and further underpin the broad applicability of our modelling framework. An R package, DDPstar, implementing the proposed method is publicly available at //bitbucket.org/mxrodriguez/ddpstar.
We consider optimal experimental design (OED) for nonlinear inverse problems within the Bayesian framework. Optimizing the data acquisition process for large-scale nonlinear Bayesian inverse problems is a computationally challenging task since the posterior is typically intractable and commonly-encountered optimality criteria depend on the observed data. Since these challenges are not present in OED for linear Bayesian inverse problems, we propose an approach based on first linearizing the associated forward problem and then optimizing the experimental design. Replacing an accurate but costly model with some linear surrogate, while justified for certain problems, can lead to incorrect posteriors and sub-optimal designs if model discrepancy is ignored. To avoid this, we use the Bayesian approximation error (BAE) approach to formulate an A-optimal design objective for sensor selection that is aware of the model error. In line with recent developments, we prove that this uncertainty-aware objective is independent of the exact choice of linearization. This key observation facilitates the formulation of an uncertainty-aware OED objective function using a completely trivial linear map, the zero map, as a surrogate to the forward dynamics. The base methodology is also extended to marginalized OED problems, accommodating uncertainties arising from both linear approximations and unknown auxiliary parameters. Our approach only requires parameter and data sample pairs, hence it is particularly well-suited for black box forward models. We demonstrate the effectiveness of our method for finding optimal designs in an idealized subsurface flow inverse problem and for tsunami detection.