In many situations when people are assigned to coalitions, the utility of each person depends on the friends in her coalition. Additionally, in many situations, the size of each coalition should be bounded. This paper studies such coalition formation scenarios in both weighted and unweighted settings. Since finding a partition that maximizes the utilitarian social welfare is computationally hard, we provide a polynomial-time approximation algorithm. We also investigate the existence and the complexity of finding stable partitions. Namely, we show that the Contractual Strict Core (CSC) is never empty, but the Strict Core (SC) of some games is empty. Finding partitions that are in the CSC is computationally easy, but even deciding whether an SC of a given game exists is NP-hard. The analysis of the core is more involved. In the unweighted setting, we show that when the coalition size is bounded by 3 the core is never empty, and we present a polynomial time algorithm for finding a member of the core. However, for the weighted setting, the core may be empty, and we prove that deciding whether there exists a core is NP-hard.
Causal questions inquire about causal relationships between different events or phenomena. They are important for a variety of use cases, including virtual assistants and search engines. However, many current approaches to causal question answering cannot provide explanations or evidence for their answers. Hence, in this paper, we aim to answer causal questions with a causality graph, a large-scale dataset of causal relations between noun phrases along with the relations' provenance data. Inspired by recent, successful applications of reinforcement learning to knowledge graph tasks, such as link prediction and fact-checking, we explore the application of reinforcement learning on a causality graph for causal question answering. We introduce an Actor-Critic-based agent which learns to search through the graph to answer causal questions. We bootstrap the agent with a supervised learning procedure to deal with large action spaces and sparse rewards. Our evaluation shows that the agent successfully prunes the search space to answer binary causal questions by visiting less than 30 nodes per question compared to over 3,000 nodes by a naive breadth-first search. Our ablation study indicates that our supervised learning strategy provides a strong foundation upon which our reinforcement learning agent improves. The paths returned by our agent explain the mechanisms by which a cause produces an effect. Moreover, for each edge on a path, our causality graph provides its original source allowing for easy verification of paths.
Observations of groundwater pollutants, such as arsenic or Perfluorooctane sulfonate (PFOS), are riddled with left censoring. These measurements have impact on the health and lifestyle of the populace. Left censoring of these spatially correlated observations are usually addressed by applying Gaussian processes (GPs), which have theoretical advantages. However, this comes with a challenging computational complexity of $\mathcal{O}(n^3)$, which is impractical for large datasets. Additionally, a sizable proportion of the data being left-censored creates further bottlenecks, since the likelihood computation now involves an intractable high-dimensional integral of the multivariate Gaussian density. In this article, we tackle these two problems simultaneously by approximating the GP with a Gaussian Markov random field (GMRF) approach that exploits an explicit link between a GP with Mat\'ern correlation function and a GMRF using stochastic partial differential equations (SPDEs). We introduce a GMRF-based measurement error into the model, which alleviates the likelihood computation for the censored data, drastically improving the speed of the model while maintaining admirable accuracy. Our approach demonstrates robustness and substantial computational scalability, compared to state-of-the-art methods for censored spatial responses across various simulation settings. Finally, the fit of this fully Bayesian model to the concentration of PFOS in groundwater available at 24,959 sites across California, where 46.62\% responses are censored, produces prediction surface and uncertainty quantification in real time, thereby substantiating the applicability and scalability of the proposed method. Code for implementation is made available via GitHub.
Reinforcement Learning (RL) has been widely applied to many control tasks and substantially improved the performances compared to conventional control methods in many domains where the reward function is well defined. However, for many real-world problems, it is often more convenient to formulate optimization problems in terms of rewards and constraints simultaneously. Optimizing such constrained problems via reward shaping can be difficult as it requires tedious manual tuning of reward functions with several interacting terms. Recent formulations which include constraints mostly require a pre-training phase, which often needs human expertise to collect data or assumes having a sub-optimal policy readily available. We propose a new constrained RL method called CSAC-LB (Constrained Soft Actor-Critic with Log Barrier Function), which achieves competitive performance without any pre-training by applying a linear smoothed log barrier function to an additional safety critic. It implements an adaptive penalty for policy learning and alleviates the numerical issues that are known to complicate the application of the log barrier function method. As a result, we show that with CSAC-LB, we achieve state-of-the-art performance on several constrained control tasks with different levels of difficulty and evaluate our methods in a locomotion task on a real quadruped robot platform.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.
Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, mining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.
We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.