亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A good understanding of the heat transfer in fused filament fabrication is crucial for an accurate stress prediction and subsequently for repetitive, high quality printing. This work focuses on two challenges that have been presented when it comes to the accuracy and efficiency in simulating the heat transfer in the fused filament fabrication process. With the prospect of choosing correct thermal boundary conditions expressing the natural convection between printed material and its environment, values for the convective heat transfer coefficient and ambient temperature were calibrated through numerical data fitting of experimental thermal measurements. Furthermore, modeling simplifications were proposed for an efficient numerical discretization of infill structures. Samples were printed with varying infill characteristics, such as varying air void size, infill densities and infill patterns. Thermal measurements were performed to investigate the role of these parameters on the heat transfer and based on these observations, possible modeling simplifications were studied in the numerical simulations.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Performer · 受試者工作特征 · ROC · 相關系數 ·
2023 年 6 月 22 日

In ambient backscatter communication (AmBC) systems, passive tags connect to a reader by reflecting an ambient radio frequency (RF) signal. However, the reader may not know the channel states and RF source parameters and can experience interference. The traditional energy detector (TED) appears to be an ideal solution. However, it performs poorly under these conditions. To address this, we propose two new detectors: (1) A joint correlation-energy detector (JCED) based on the first-order correlation of the received samples and (2) An improved energy detector (IED) based on the p-th norm of the received signal vector. We compare the performance of the IED and TED under generalized noise modeled using the McLeish distribution and derive a general analytical formula for the area under the receiver operating characteristic (ROC) curves. Based on our results, both detectors outperform TED. For example, the probability of detection with a false alarm rate of 1% for JCED and IED is 14% and 5% higher, respectively, compared to TED. These gains are even higher using the direct interference cancellation (DIC) technique, with increases of 16% and 7%, respectively. Overall, our proposed detectors offer better performance than the TED, making them useful tools for improving AmBC system performance.

Advancements in reinforcement learning (RL) have demonstrated superhuman performance in complex tasks such as Starcraft, Go, Chess etc. However, knowledge transfer from Artificial "Experts" to humans remain a significant challenge. A promising avenue for such transfer would be the use of curricula. Recent methods in curricula generation focuses on training RL agents efficiently, yet such methods rely on surrogate measures to track student progress, and are not suited for training robots in the real world (or more ambitiously humans). In this paper, we introduce a method named Parameterized Environment Response Model (PERM) that shows promising results in training RL agents in parameterized environments. Inspired by Item Response Theory, PERM seeks to model difficulty of environments and ability of RL agents directly. Given that RL agents and humans are trained more efficiently under the "zone of proximal development", our method generates a curriculum by matching the difficulty of an environment to the current ability of the student. In addition, PERM can be trained offline and does not employ non-stationary measures of student ability, making it suitable for transfer between students. We demonstrate PERM's ability to represent the environment parameter space, and training with RL agents with PERM produces a strong performance in deterministic environments. Lastly, we show that our method is transferable between students, without any sacrifice in training quality.

In this work, we propose a built-in Deep Learning Physics Optimization (DLPO) framework to set up a shape optimization study of the Duisburg Test Case (DTC) container vessel. We present two different applications: (1) sensitivity analysis to detect the most promising generic basis hull shapes, and (2) multi-objective optimization to quantify the trade-off between optimal hull forms. DLPO framework allows for the evaluation of design iterations automatically in an end-to-end manner. We achieved these results by coupling Extrality's Deep Learning Physics (DLP) model to a CAD engine and an optimizer. Our proposed DLP model is trained on full 3D volume data coming from RANS simulations, and it can provide accurate and high-quality 3D flow predictions in real-time, which makes it a good evaluator to perform optimization of new container vessel designs w.r.t the hydrodynamic efficiency. In particular, it is able to recover the forces acting on the vessel by integration on the hull surface with a mean relative error of 3.84\% \pm 2.179\% on the total resistance. Each iteration takes only 20 seconds, thus leading to a drastic saving of time and engineering efforts, while delivering valuable insight into the performance of the vessel, including RANS-like detailed flow information. We conclude that DLPO framework is a promising tool to accelerate the ship design process and lead to more efficient ships with better hydrodynamic performance.

We propose a logic-informed knowledge-driven modeling framework for human movements by analyzing their trajectories. Our approach is inspired by the fact that human actions are usually driven by their intentions or desires, and are influenced by environmental factors such as the spatial relationships with surrounding objects. In this paper, we introduce a set of spatial-temporal logic rules as knowledge to explain human actions. These rules will be automatically discovered from observational data. To learn the model parameters and the rule content, we design an expectation-maximization (EM) algorithm, which treats the rule content as latent variables. The EM algorithm alternates between the E-step and M-step: in the E-step, the posterior distribution over the latent rule content is evaluated; in the M-step, the rule generator and model parameters are jointly optimized by maximizing the current expected log-likelihood. Our model may have a wide range of applications in areas such as sports analytics, robotics, and autonomous cars, where understanding human movements are essential. We demonstrate the model's superior interpretability and prediction performance on pedestrian and NBA basketball player datasets, both achieving promising results.

We explore sim-to-real transfer of deep reinforcement learning controllers for a heavy vehicle with active suspensions designed for traversing rough terrain. While related research primarily focuses on lightweight robots with electric motors and fast actuation, this study uses a forestry vehicle with a complex hydraulic driveline and slow actuation. We simulate the vehicle using multibody dynamics and apply system identification to find an appropriate set of simulation parameters. We then train policies in simulation using various techniques to mitigate the sim-to-real gap, including domain randomization, action delays, and a reward penalty to encourage smooth control. In reality, the policies trained with action delays and a penalty for erratic actions perform at nearly the same level as in simulation. In experiments on level ground, the motion trajectories closely overlap when turning to either side, as well as in a route tracking scenario. When faced with a ramp that requires active use of the suspensions, the simulated and real motions are in close alignment. This shows that the actuator model together with system identification yields a sufficiently accurate model of the actuators. We observe that policies trained without the additional action penalty exhibit fast switching or bang-bang control. These present smooth motions and high performance in simulation but transfer poorly to reality. We find that policies make marginal use of the local height map for perception, showing no indications of look-ahead planning. However, the strong transfer capabilities entail that further development concerning perception and performance can be largely confined to simulation.

Communication overhead is one of the major challenges in Federated Learning(FL). A few classical schemes assume the server can extract the auxiliary information about training data of the participants from the local models to construct a central dummy dataset. The server uses the dummy dataset to finetune aggregated global model to achieve the target test accuracy in fewer communication rounds. In this paper, we summarize the above solutions into a data-based communication-efficient FL framework. The key of the proposed framework is to design an efficient extraction module(EM) which ensures the dummy dataset has a positive effect on finetuning aggregated global model. Different from the existing methods that use generator to design EM, our proposed method, FedINIBoost borrows the idea of gradient match to construct EM. Specifically, FedINIBoost builds a proxy dataset of the real dataset in two steps for each participant at each communication round. Then the server aggregates all the proxy datasets to form a central dummy dataset, which is used to finetune aggregated global model. Extensive experiments verify the superiority of our method compared with the existing classical method, FedAVG, FedProx, Moon and FedFTG. Moreover, FedINIBoost plays a significant role in finetuning the performance of aggregated global model at the initial stage of FL.

An efficient characterization of scientifically significant locations is essential prior to the return of humans to the Moon. The highest resolution imagery acquired from orbit of south-polar shadowed regions and other relevant locations remains, at best, an order of magnitude larger than the characteristic length of most of the robotic systems to be deployed. This hinders the planning and successful implementation of prospecting missions and poses a high risk for the traverse of robots and humans, diminishing the potential overall scientific and commercial return of any mission. We herein present the design of a lightweight, compact, autonomous, and reusable lunar reconnaissance drone capable of assisting other ground-based robotic assets, and eventually humans, in the characterization and high-resolution mapping (~0.1 m/px) of particularly challenging and hard-to-access locations on the lunar surface. The proposed concept consists of two main subsystems: the drone and its service station. With a total combined wet mass of 100 kg, the system is capable of 11 flights without refueling the service station, enabling almost 9 km of accumulated flight distance. The deployment of such a system could significantly impact the efficiency of upcoming exploration missions, increasing the distance covered per day of exploration and significantly reducing the need for recurrent contacts with ground stations on Earth.

Integrated Sensing and Communication (ISAC) is an emerging technology that integrates wireless sensing and communication into a single system, transforming many applications, including cooperative mobile robotics. However, in scenarios where radio communications are unavailable, alternative approaches are needed. In this paper, we propose a new optical ISAC (OISAC) scheme for cooperative mobile robots by integrating camera sensing and screen-camera communication (SCC). Unlike previous throughput-oriented SCC designs that work with stationary SCC links, our OISAC scheme is designed for real-time control of mobile robots. It addresses new problems such as image blur and long image display delay. As a case study, we consider the leader-follower formation control problem, an essential part of cooperative mobile robotics. The proposed OISAC scheme enables the follower robot to simultaneously acquire the information shared by the leader and sense the relative pose to the leader using only RGB images captured by its onboard camera. We then design a new control law that can leverage all the information acquired by the camera to achieve stable and accurate formations. We design and conduct real-world experiments involving uniform and nonuniform motions to evaluate the proposed system and demonstrate the advantages of applying OISAC over a benchmark approach that uses extended Kalman filtering (EKF) to estimate the leader's states. Our results show that the proposed OISAC-augmented leader-follower formation system achieves better performance in terms of accuracy, stability, and robustness.

Closed combustion devices like gas turbines and rockets are prone to thermoacoustic instabilities. Design engineers in the industry need tools to accurately identify and remove instabilities early in the design cycle. Many different approaches have been developed by the researchers over the years. In this work we focus on the Helmholtz wave equation based solver which is found to be relatively fast and accurate for most applications. This solver has been a subject of study in many previous works. The Helmholtz wave equation in frequency space reduces to a nonlinear eigenvalue problem which needs to be solved to compute the acoustic modes. Most previous implementations of this solver have relied on linearized solvers and iterative methods which as shown in this work are not very efficient and sometimes inaccurate. In this work we make use of specialized algorithms implemented in SLEPc that are accurate and efficient for computing eigenvalues of nonlinear eigenvalue problems. We make use of the n-tau model to compute the reacting source terms in the Helmholtz equation and describe the steps involved in deriving the Helmholtz eigenvalue equation and obtaining its solution using the SLEPc library.

Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.

北京阿比特科技有限公司