亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Vehicle-to-everything (V2X) perception is an innovative technology that enhances vehicle perception accuracy, thereby elevating the security and reliability of autonomous systems. However, existing V2X perception methods focus on static scenes from mainly vehicle-based vision, which is constrained by sensor capabilities and communication loads. To adapt V2X perception models to dynamic scenes, we propose to build V2X perception from road-to-vehicle vision and present Adaptive Road-to-Vehicle Perception (AR2VP) method. In AR2VP,we leverage roadside units to offer stable, wide-range sensing capabilities and serve as communication hubs. AR2VP is devised to tackle both intra-scene and inter-scene changes. For the former, we construct a dynamic perception representing module, which efficiently integrates vehicle perceptions, enabling vehicles to capture a more comprehensive range of dynamic factors within the scene.Moreover, we introduce a road-to-vehicle perception compensating module, aimed at preserving the maximized roadside unit perception information in the presence of intra-scene changes.For inter-scene changes, we implement an experience replay mechanism leveraging the roadside unit's storage capacity to retain a subset of historical scene data, maintaining model robustness in response to inter-scene shifts. We conduct perception experiment on 3D object detection and segmentation, and the results show that AR2VP excels in both performance-bandwidth trade-offs and adaptability within dynamic environments.

相關內容

Hyperspectral image (HSI) clustering is gaining considerable attention owing to recent methods that overcome the inefficiency and misleading results from the absence of supervised information. Contrastive learning methods excel at existing pixel level and super pixel level HSI clustering tasks. The pixel-level contrastive learning method can effectively improve the ability of the model to capture fine features of HSI but requires a large time overhead. The super pixel-level contrastive learning method utilizes the homogeneity of HSI and reduces computing resources; however, it yields rough classification results. To exploit the strengths of both methods, we present a pixel super pixel contrastive learning and pseudo-label correction (PSCPC) method for the HSI clustering. PSCPC can reasonably capture domain-specific and fine-grained features through super pixels and the comparative learning of a small number of pixels within the super pixels. To improve the clustering performance of super pixels, this paper proposes a pseudo-label correction module that aligns the clustering pseudo-labels of pixels and super-pixels. In addition, pixel-level clustering results are used to supervise super pixel-level clustering, improving the generalization ability of the model. Extensive experiments demonstrate the effectiveness and efficiency of PSCPC.

In recent years, end-to-end speech recognition has emerged as a technology that integrates the acoustic, pronunciation dictionary, and language model components of the traditional Automatic Speech Recognition model. It is possible to achieve human-like recognition without the need to build a pronunciation dictionary in advance. However, due to the relative scarcity of training data on code-switching, the performance of ASR models tends to degrade drastically when encountering this phenomenon. Most past studies have simplified the learning complexity of the model by splitting the code-switching task into multiple tasks dealing with a single language and then learning the domain-specific knowledge of each language separately. Therefore, in this paper, we attempt to introduce language identification information into the middle layer of the ASR model's encoder. We aim to generate acoustic features that imply language distinctions in a more implicit way, reducing the model's confusion when dealing with language switching.

The prevalence of the powerful multilingual models, such as Whisper, has significantly advanced the researches on speech recognition. However, these models often struggle with handling the code-switching setting, which is essential in multilingual speech recognition. Recent studies have attempted to address this setting by separating the modules for different languages to ensure distinct latent representations for languages. Some other methods considered the switching mechanism based on language identification. In this study, a new attention-guided adaptation is proposed to conduct parameter-efficient learning for bilingual ASR. This method selects those attention heads in a model which closely express language identities and then guided those heads to be correctly attended with their corresponding languages. The experiments on the Mandarin-English code-switching speech corpus show that the proposed approach achieves a 14.2% mixed error rate, surpassing state-of-the-art method, where only 5.6% additional parameters over Whisper are trained.

Operational consistent query answering (CQA) is a recent framework for CQA based on revised definitions of repairs, which are built by applying a sequence of operations (e.g., fact deletions) starting from an inconsistent database until we reach a database that is consistent w.r.t. the given set of constraints. It has been recently shown that there are efficient approximations for computing the percentage of repairs, as well as of sequences of operations leading to repairs, that entail a given query when we focus on primary keys, conjunctive queries, and assuming the query is fixed (i.e., in data complexity). However, it has been left open whether such approximations exist when the query is part of the input (i.e., in combined complexity). We show that this is the case when we focus on self-join-free conjunctive queries of bounded generelized hypertreewidth. We also show that it is unlikely that efficient approximation schemes exist once we give up one of the adopted syntactic restrictions, i.e., self-join-freeness or bounding the generelized hypertreewidth. Towards the desired approximation schemes, we introduce a novel counting complexity class, called SpanTL, show that each problem in SpanTL admits an efficient approximation scheme by using a recent approximability result in the context of tree automata, and then place the problems of interest in SpanTL.

Cooperative perception is crucial for connected automated vehicles in intelligent transportation systems (ITSs); however, ensuring the authenticity of perception data remains a challenge as the vehicles cannot verify events that they do not witness independently. Various studies have been conducted on establishing the authenticity of data, such as trust-based statistical methods and plausibility-based methods. However, these methods are limited as they require prior knowledge such as previous sender behaviors or predefined rules to evaluate the authenticity. To overcome this limitation, this study proposes a novel approach called zero-knowledge Proof of Traffic (zk-PoT), which involves generating cryptographic proofs to the traffic observations. Multiple independent proofs regarding the same vehicle can be deterministically cross-verified by any receivers without relying on ground truth, probabilistic, or plausibility evaluations. Additionally, no private information is compromised during the entire procedure. A full on-board unit software stack that reflects the behavior of zk-PoT is implemented within a specifically designed simulator called Flowsim. A comprehensive experimental analysis is then conducted using synthesized city-scale simulations, which demonstrates that zk-PoT's cross-verification ratio ranges between 80 % to 96 %, and 80 % of the verification is achieved in 2 s, with a protocol overhead of approximately 25 %. Furthermore, the analyses of various attacks indicate that most of the attacks could be prevented, and some, such as collusion attacks, can be mitigated. The proposed approach can be incorporated into existing works, including the European Telecommunications Standards Institute (ETSI) and the International Organization for Standardization (ISO) ITS standards, without disrupting the backward compatibility.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司