亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This short paper introduces a novel approach to global sensitivity analysis, grounded in the variance-covariance structure of random variables derived from random measures. The proposed methodology facilitates the application of information-theoretic rules for uncertainty quantification, offering several advantages. Specifically, the approach provides valuable insights into the decomposition of variance within discrete subspaces, similar to the standard ANOVA analysis. To illustrate this point, the method is applied to datasets obtained from the analysis of randomized controlled trials on evaluating the efficacy of the COVID-19 vaccine and assessing clinical endpoints in a lung cancer study.

相關內容

We study inference on the long-term causal effect of a continual exposure to a novel intervention, which we term a long-term treatment, based on an experiment involving only short-term observations. Key examples include the long-term health effects of regularly-taken medicine or of environmental hazards and the long-term effects on users of changes to an online platform. This stands in contrast to short-term treatments or ``shocks," whose long-term effect can reasonably be mediated by short-term observations, enabling the use of surrogate methods. Long-term treatments by definition have direct effects on long-term outcomes via continual exposure, so surrogacy conditions cannot reasonably hold. We connect the problem with offline reinforcement learning, leveraging doubly-robust estimators to estimate long-term causal effects for long-term treatments and construct confidence intervals.

This paper introduces and investigates the utilization of maximum and average distance correlations for multivariate independence testing. We characterize their consistency properties in high-dimensional settings with respect to the number of marginally dependent dimensions, assess the advantages of each test statistic, examine their respective null distributions, and present a fast chi-square-based testing procedure. The resulting tests are non-parametric and applicable to both Euclidean distance and the Gaussian kernel as the underlying metric. To better understand the practical use cases of the proposed tests, we evaluate the empirical performance of the maximum distance correlation, average distance correlation, and the original distance correlation across various multivariate dependence scenarios, as well as conduct a real data experiment to test the presence of various cancer types and peptide levels in human plasma.

In social recommender systems, it is crucial that the recommendation models provide equitable visibility for different demographic groups, such as gender or race. Most existing research has addressed this problem by only studying individual static snapshots of networks that typically change over time. To address this gap, we study the evolution of recommendation fairness over time and its relation to dynamic network properties. We examine three real-world dynamic networks by evaluating the fairness of six recommendation algorithms and analyzing the association between fairness and network properties over time. We further study how interventions on network properties influence fairness by examining counterfactual scenarios with alternative evolution outcomes and differing network properties. Our results on empirical datasets suggest that recommendation fairness improves over time, regardless of the recommendation method. We also find that two network properties, minority ratio, and homophily ratio, exhibit stable correlations with fairness over time. Our counterfactual study further suggests that an extreme homophily ratio potentially contributes to unfair recommendations even with a balanced minority ratio. Our work provides insights into the evolution of fairness within dynamic networks in social science. We believe that our findings will help system operators and policymakers to better comprehend the implications of temporal changes and interventions targeting fairness in social networks.

This paper introduces a new approach to address the issue of class imbalance in graph neural networks (GNNs) for learning on graph-structured data. Our approach integrates imbalanced node classification and Bias-Variance Decomposition, establishing a theoretical framework that closely relates data imbalance to model variance. We also leverage graph augmentation technique to estimate the variance, and design a regularization term to alleviate the impact of imbalance. Exhaustive tests are conducted on multiple benchmarks, including naturally imbalanced datasets and public-split class-imbalanced datasets, demonstrating that our approach outperforms state-of-the-art methods in various imbalanced scenarios. This work provides a novel theoretical perspective for addressing the problem of imbalanced node classification in GNNs.

In this paper, the sensing beam pattern gain under simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS)-enabled integrated sensing and communications (ISAC) systems is investigated, in which multiple targets and multiple users exist. However, multiple targets detection introduces new challenges, since the STAR-RIS cannot directly send sensing beams and detect targets, the dual-functional base station (DFBS) is required to analyze the echoes of the targets. While the echoes reflected by different targets through STAR-RIS come from the same direction for the DFBS, making it impossible to distinguish them. To address the issue, we first introduce the signature sequence (SS) modulation scheme to the ISAC system, and thus, the DFBS can detect different targets by the SS-modulated sensing beams. Next, via the joint beamforming design of DFBS and STAR-RIS, we develop a maxmin sensing beam pattern gain problem, and meanwhile, considering the communication quality requirements, the interference limitations of other targets and users, the passive nature constraint of STAR-RIS, and the total transmit power limitation. Then, to tackle the complex non-convex problem, we propose an alternating optimization method to divide it into two quadratic semidefinite program subproblems and decouple the coupled variables. Drawing on mathematical transformation, semidefinite programming, as well as semidefinite relaxation techniques, these two subproblems are iteratively sloved until convergence, and the ultimate solutions are obtained. Finally, simulation results are conducted to validate the benefits and efficiency of our proposed scheme.

A better understanding of interactive pedestrian behavior in critical traffic situations is essential for the development of enhanced pedestrian safety systems. Real-world traffic observations play a decisive role in this, since they represent behavior in an unbiased way. In this work, we present an approach of how a subset of very considerable pedestrian-vehicle interactions can be derived from a camera-based observation system. For this purpose, we have examined road user trajectories automatically for establishing temporal and spatial relationships, using 110h hours of video recordings. In order to identify critical interactions, our approach combines the metric post-encroachment time with a newly introduced motion adaption metric. From more than 11,000 reconstructed pedestrian trajectories, 259 potential scenarios remained, using a post-encroachment time threshold of 2s. However, in 95% of cases, no adaptation of the pedestrian behavior was observed due to avoiding criticality. Applying the proposed motion adaption metric, only 21 critical scenarios remained. Manual investigations revealed that critical pedestrian vehicle interactions were present in 7 of those. They were further analyzed and made publicly available for developing pedestrian behavior models3. The results indicate that critical interactions in which the pedestrian perceives and reacts to the vehicle at a relatively late stage can be extracted using the proposed method.

We study off-policy evaluation (OPE) in the problem of slate contextual bandits where a policy selects multi-dimensional actions known as slates. This problem is widespread in recommender systems, search engines, marketing, to medical applications, however, the typical Inverse Propensity Scoring (IPS) estimator suffers from substantial variance due to large action spaces, making effective OPE a significant challenge. The PseudoInverse (PI) estimator has been introduced to mitigate the variance issue by assuming linearity in the reward function, but this can result in significant bias as this assumption is hard-to-verify from observed data and is often substantially violated. To address the limitations of previous estimators, we develop a novel estimator for OPE of slate bandits, called Latent IPS (LIPS), which defines importance weights in a low-dimensional slate abstraction space where we optimize slate abstractions to minimize the bias and variance of LIPS in a data-driven way. By doing so, LIPS can substantially reduce the variance of IPS without imposing restrictive assumptions on the reward function structure like linearity. Through empirical evaluation, we demonstrate that LIPS substantially outperforms existing estimators, particularly in scenarios with non-linear rewards and large slate spaces.

In this paper, we introduce a kNN-based regression method that synergizes the scalability and adaptability of traditional non-parametric kNN models with a novel variable selection technique. This method focuses on accurately estimating the conditional mean and variance of random response variables, thereby effectively characterizing conditional distributions across diverse scenarios.Our approach incorporates a robust uncertainty quantification mechanism, leveraging our prior estimation work on conditional mean and variance. The employment of kNN ensures scalable computational efficiency in predicting intervals and statistical accuracy in line with optimal non-parametric rates. Additionally, we introduce a new kNN semi-parametric algorithm for estimating ROC curves, accounting for covariates. For selecting the smoothing parameter k, we propose an algorithm with theoretical guarantees.Incorporation of variable selection enhances the performance of the method significantly over conventional kNN techniques in various modeling tasks. We validate the approach through simulations in low, moderate, and high-dimensional covariate spaces. The algorithm's effectiveness is particularly notable in biomedical applications as demonstrated in two case studies. Concluding with a theoretical analysis, we highlight the consistency and convergence rate of our method over traditional kNN models, particularly when the underlying regression model takes values in a low-dimensional space.

This paper introduces a novel numerical approach to achieving smooth lane-change trajectories in autonomous driving scenarios. Our trajectory generation approach leverages particle swarm optimization (PSO) techniques, incorporating Neural Network (NN) predictions for trajectory refinement. The generation of smooth and dynamically feasible trajectories for the lane change maneuver is facilitated by combining polynomial curve fitting with particle propagation, which can account for vehicle dynamics. The proposed planning algorithm is capable of determining feasible trajectories with real-time computation capability. We conduct comparative analyses with two baseline methods for lane changing, involving analytic solutions and heuristic techniques in numerical simulations. The simulation results validate the efficacy and effectiveness of our proposed approach.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司