亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Video understanding tasks take many forms, from action detection to visual query localization and spatio-temporal grounding of sentences. These tasks differ in the type of inputs (only video, or video-query pair where query is an image region or sentence) and outputs (temporal segments or spatio-temporal tubes). However, at their core they require the same fundamental understanding of the video, i.e., the actors and objects in it, their actions and interactions. So far these tasks have been tackled in isolation with individual, highly specialized architectures, which do not exploit the interplay between tasks. In contrast, in this paper, we present a single, unified model for tackling query-based video understanding in long-form videos. In particular, our model can address all three tasks of the Ego4D Episodic Memory benchmark which entail queries of three different forms: given an egocentric video and a visual, textual or activity query, the goal is to determine when and where the answer can be seen within the video. Our model design is inspired by recent query-based approaches to spatio-temporal grounding, and contains modality-specific query encoders and task-specific sliding window inference that allow multi-task training with diverse input modalities and different structured outputs. We exhaustively analyze relationships among the tasks and illustrate that cross-task learning leads to improved performance on each individual task, as well as the ability to generalize to unseen tasks, such as zero-shot spatial localization of language queries.

相關內容

Previous multi-task dense prediction studies developed complex pipelines such as multi-modal distillations in multiple stages or searching for task relational contexts for each task. The core insight beyond these methods is to maximize the mutual effects of each task. Inspired by the recent query-based Transformers, we propose a simple pipeline named Multi-Query Transformer (MQTransformer) that is equipped with multiple queries from different tasks to facilitate the reasoning among multiple tasks and simplify the cross-task interaction pipeline. Instead of modeling the dense per-pixel context among different tasks, we seek a task-specific proxy to perform cross-task reasoning via multiple queries where each query encodes the task-related context. The MQTransformer is composed of three key components: shared encoder, cross-task query attention module and shared decoder. We first model each task with a task-relevant query. Then both the task-specific feature output by the feature extractor and the task-relevant query are fed into the shared encoder, thus encoding the task-relevant query from the task-specific feature. Secondly, we design a cross-task query attention module to reason the dependencies among multiple task-relevant queries; this enables the module to only focus on the query-level interaction. Finally, we use a shared decoder to gradually refine the image features with the reasoned query features from different tasks. Extensive experiment results on two dense prediction datasets (NYUD-v2 and PASCAL-Context) show that the proposed method is an effective approach and achieves state-of-the-art results. Code and models are available at //github.com/yangyangxu0/MQTransformer.

Different video understanding tasks are typically treated in isolation, and even with distinct types of curated data (e.g., classifying sports in one dataset, tracking animals in another). However, in wearable cameras, the immersive egocentric perspective of a person engaging with the world around them presents an interconnected web of video understanding tasks -- hand-object manipulations, navigation in the space, or human-human interactions -- that unfold continuously, driven by the person's goals. We argue that this calls for a much more unified approach. We propose EgoTask Translation (EgoT2), which takes a collection of models optimized on separate tasks and learns to translate their outputs for improved performance on any or all of them at once. Unlike traditional transfer or multi-task learning, EgoT2's flipped design entails separate task-specific backbones and a task translator shared across all tasks, which captures synergies between even heterogeneous tasks and mitigates task competition. Demonstrating our model on a wide array of video tasks from Ego4D, we show its advantages over existing transfer paradigms and achieve top-ranked results on four of the Ego4D 2022 benchmark challenges.

Understanding 3D scenes from multi-view inputs has been proven to alleviate the view discrepancy issue in 3D visual grounding. However, existing methods normally neglect the view cues embedded in the text modality and fail to weigh the relative importance of different views. In this paper, we propose ViewRefer, a multi-view framework for 3D visual grounding exploring how to grasp the view knowledge from both text and 3D modalities. For the text branch, ViewRefer leverages the diverse linguistic knowledge of large-scale language models, e.g., GPT, to expand a single grounding text to multiple geometry-consistent descriptions. Meanwhile, in the 3D modality, a transformer fusion module with inter-view attention is introduced to boost the interaction of objects across views. On top of that, we further present a set of learnable multi-view prototypes, which memorize scene-agnostic knowledge for different views, and enhance the framework from two perspectives: a view-guided attention module for more robust text features, and a view-guided scoring strategy during the final prediction. With our designed paradigm, ViewRefer achieves superior performance on three benchmarks and surpasses the second-best by +2.8%, +1.2%, and +0.73% on Sr3D, Nr3D, and ScanRefer. Code will be released at //github.com/ZiyuGuo99/ViewRefer3D.

Large-scale text-to-image generation models have achieved remarkable progress in synthesizing high-quality, feature-rich images with high resolution guided by texts. However, these models often struggle with novel concepts, eg, new styles, object entities, etc. Although recent attempts have employed fine-tuning or prompt-tuning strategies to teach the pre-trained diffusion model novel concepts from a reference image set,they have the drawback of overfitting to the given reference images, particularly in one-shot applications, which is harmful to generate diverse and high-quality images while maintaining generation controllability. To tackle this challenge, we present a simple yet effective method called DreamArtist, which employs a positive-negative prompt-tuning learning strategy. Specifically, DreamArtist incorporates both positive and negative embeddings and jointly trains them. The positive embedding aggressively captures the salient characteristics of the reference image to drive diversified generation and the negative embedding rectifies inadequacies from the positive embedding. It learns not only what is correct, but also what can be avoided or improved. We have conducted extensive experiments and evaluated the proposed method from image similarity and diversity, generation controllability, and style cloning. And our DreamArtist has achieved a superior generation performance over existing methods. Besides, our additional evaluation on extended tasks, including concept compositions and prompt-guided image editing, demonstrates its effectiveness for more applications.

Scaling up weakly-supervised datasets has shown to be highly effective in the image-text domain and has contributed to most of the recent state-of-the-art computer vision and multimodal neural networks. However, existing large-scale video-text datasets and mining techniques suffer from several limitations, such as the scarcity of aligned data, the lack of diversity in the data, and the difficulty of collecting aligned data. Currently popular video-text data mining approach via automatic speech recognition (ASR) used in HowTo100M provides low-quality captions that often do not refer to the video content. Other mining approaches do not provide proper language descriptions (video tags) and are biased toward short clips (alt text). In this work, we show how recent advances in image captioning allow us to pre-train high-quality video models without any parallel video-text data. We pre-train several video captioning models that are based on an OPT language model and a TimeSformer visual backbone. We fine-tune these networks on several video captioning datasets. First, we demonstrate that image captioning pseudolabels work better for pre-training than the existing HowTo100M ASR captions. Second, we show that pre-training on both images and videos produces a significantly better network (+4 CIDER on MSR-VTT) than pre-training on a single modality. Our methods are complementary to the existing pre-training or data mining approaches and can be used in a variety of settings. Given the efficacy of the pseudolabeling method, we are planning to publicly release the generated captions.

Characters are essential to the plot of any story. Establishing the characters before writing a story can improve the clarity of the plot and the overall flow of the narrative. However, previous work on visual storytelling tends to focus on detecting objects in images and discovering relationships between them. In this approach, characters are not distinguished from other objects when they are fed into the generation pipeline. The result is a coherent sequence of events rather than a character-centric story. In order to address this limitation, we introduce the VIST-Character dataset, which provides rich character-centric annotations, including visual and textual co-reference chains and importance ratings for characters. Based on this dataset, we propose two new tasks: important character detection and character grounding in visual stories. For both tasks, we develop simple, unsupervised models based on distributional similarity and pre-trained vision-and-language models. Our new dataset, together with these models, can serve as the foundation for subsequent work on analysing and generating stories from a character-centric perspective.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

What matters for contrastive learning? We argue that contrastive learning heavily relies on informative features, or "hard" (positive or negative) features. Early works include more informative features by applying complex data augmentations and large batch size or memory bank, and recent works design elaborate sampling approaches to explore informative features. The key challenge toward exploring such features is that the source multi-view data is generated by applying random data augmentations, making it infeasible to always add useful information in the augmented data. Consequently, the informativeness of features learned from such augmented data is limited. In response, we propose to directly augment the features in latent space, thereby learning discriminative representations without a large amount of input data. We perform a meta learning technique to build the augmentation generator that updates its network parameters by considering the performance of the encoder. However, insufficient input data may lead the encoder to learn collapsed features and therefore malfunction the augmentation generator. A new margin-injected regularization is further added in the objective function to avoid the encoder learning a degenerate mapping. To contrast all features in one gradient back-propagation step, we adopt the proposed optimization-driven unified contrastive loss instead of the conventional contrastive loss. Empirically, our method achieves state-of-the-art results on several benchmark datasets.

Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.

We propose UniViLM: a Unified Video and Language pre-training Model for multimodal understanding and generation. Motivated by the recent success of BERT based pre-training technique for NLP and image-language tasks, VideoBERT and CBT are proposed to exploit BERT model for video and language pre-training using narrated instructional videos. Different from their works which only pre-train understanding task, we propose a unified video-language pre-training model for both understanding and generation tasks. Our model comprises of 4 components including two single-modal encoders, a cross encoder and a decoder with the Transformer backbone. We first pre-train our model to learn the universal representation for both video and language on a large instructional video dataset. Then we fine-tune the model on two multimodal tasks including understanding task (text-based video retrieval) and generation task (multimodal video captioning). Our extensive experiments show that our method can improve the performance of both understanding and generation tasks and achieves the state-of-the art results.

北京阿比特科技有限公司