While the contagious nature of online toxicity sparked increasing interest in its early detection and prevention, most of the literature focuses on the Western world. In this work, we demonstrate that 1) it is possible to detect toxicity triggers in an Asian online community, and 2) toxicity triggers can be strikingly different between Western and Eastern contexts.
Learning models that offer robust out-of-distribution generalization and fast adaptation is a key challenge in modern machine learning. Modelling causal structure into neural networks holds the promise to accomplish robust zero and few-shot adaptation. Recent advances in differentiable causal discovery have proposed to factorize the data generating process into a set of modules, i.e. one module for the conditional distribution of every variable where only causal parents are used as predictors. Such a modular decomposition of knowledge enables adaptation to distributions shifts by only updating a subset of parameters. In this work, we systematically study the generalization and adaption performance of such modular neural causal models by comparing it to monolithic models and structured models where the set of predictors is not constrained to causal parents. Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes and offer robust generalization. We also found that the effects are more significant for sparser graphs as compared to denser graphs.
Algorithmic fairness has attracted increasing attention in the machine learning community. Various definitions are proposed in the literature, but the differences and connections among them are not clearly addressed. In this paper, we review and reflect on various fairness notions previously proposed in machine learning literature, and make an attempt to draw connections to arguments in moral and political philosophy, especially theories of justice. We also consider fairness inquiries from a dynamic perspective, and further consider the long-term impact that is induced by current prediction and decision. In light of the differences in the characterized fairness, we present a flowchart that encompasses implicit assumptions and expected outcomes of different types of fairness inquiries on the data generating process, on the predicted outcome, and on the induced impact, respectively. This paper demonstrates the importance of matching the mission (which kind of fairness one would like to enforce) and the means (which spectrum of fairness analysis is of interest, what is the appropriate analyzing scheme) to fulfill the intended purpose.
In recent years, machine learning (ML) has come to rely more heavily on crowdworkers, both for building bigger datasets and for addressing research questions requiring human interaction or judgment. Owing to the diverse tasks performed by crowdworkers, and the myriad ways the resulting datasets are used, it can be difficult to determine when these individuals are best thought of as workers, versus as human subjects. These difficulties are compounded by conflicting policies, with some institutions and researchers treating all ML crowdwork as human subjects research, and other institutions holding that ML crowdworkers rarely constitute human subjects. Additionally, few ML papers involving crowdwork mention IRB oversight, raising the prospect that many might not be in compliance with ethical and regulatory requirements. In this paper, we focus on research in natural language processing to investigate the appropriate designation of crowdsourcing studies and the unique challenges that ML research poses for research oversight. Crucially, under the U.S. Common Rule, these judgments hinge on determinations of "aboutness", both whom (or what) the collected data is about and whom (or what) the analysis is about. We highlight two challenges posed by ML: (1) the same set of workers can serve multiple roles and provide many sorts of information; and (2) compared to the life sciences and social sciences, ML research tends to embrace a dynamic workflow, where research questions are seldom stated ex ante and data sharing opens the door for future studies to ask questions about different targets from the original study. In particular, our analysis exposes a potential loophole in the Common Rule, where researchers can elude research ethics oversight by splitting data collection and analysis into distinct studies. We offer several policy recommendations to address these concerns.
In experiments that study social phenomena, such as peer influence or herd immunity, the treatment of one unit may influence the outcomes of others. Such "interference between units" violates traditional approaches for causal inference, so that additional assumptions are often imposed to model or limit the underlying social mechanism. For binary outcomes, we propose an approach that does not require such assumptions, allowing for interference that is both unmodeled and strong, with confidence intervals derived using only the randomization of treatment. However, the estimates will have wider confidence intervals and weaker causal implications than those attainable under stronger assumptions. The approach allows for the usage of regression, matching, or weighting, as may best fit the application at hand. Inference is done by bounding the distribution of the estimation error over all possible values of the unknown counterfactual, using an integer program. Examples are shown using using a vaccination trial and two experiments investigating social influence.
Real-time estimation of actual object depth is an essential module for various autonomous system tasks such as 3D reconstruction, scene understanding and condition assessment. During the last decade of machine learning, extensive deployment of deep learning methods to computer vision tasks has yielded approaches that succeed in achieving realistic depth synthesis out of a simple RGB modality. Most of these models are based on paired RGB-depth data and/or the availability of video sequences and stereo images. The lack of sequences, stereo data and RGB-depth pairs makes depth estimation a fully unsupervised single-image transfer problem that has barely been explored so far. This study builds on recent advances in the field of generative neural networks in order to establish fully unsupervised single-shot depth estimation. Two generators for RGB-to-depth and depth-to-RGB transfer are implemented and simultaneously optimized using the Wasserstein-1 distance, a novel perceptual reconstruction term and hand-crafted image filters. We comprehensively evaluate the models using industrial surface depth data as well as the Texas 3D Face Recognition Database, the CelebAMask-HQ database of human portraits and the SURREAL dataset that records body depth. For each evaluation dataset the proposed method shows a significant increase in depth accuracy compared to state-of-the-art single-image transfer methods.
Standard pretrained language models operate on sequences of subword tokens without direct access to the characters that compose each token's string representation. We probe the embedding layer of pretrained language models and show that models learn the internal character composition of whole word and subword tokens to a surprising extent, without ever seeing the characters coupled with the tokens. Our results show that the embedding layer of RoBERTa holds enough information to accurately spell up to a third of the vocabulary and reach high average character ngram overlap on all token types. We further test whether enriching subword models with additional character information can improve language modeling, and observe that this method has a near-identical learning curve as training without spelling-based enrichment. Overall, our results suggest that language modeling objectives incentivize the model to implicitly learn some notion of spelling, and that explicitly teaching the model how to spell does not appear to enhance its performance on such tasks.
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model: more accurate gradients allow them to use larger learning rates and optimize faster. We consider the setting in which all workers sample from the same dataset, and communicate over a sparse graph (decentralized). In this setting, current theory fails to capture important aspects of real-world behavior. First, the 'spectral gap' of the communication graph is not predictive of its empirical performance in (deep) learning. Second, current theory does not explain that collaboration enables larger learning rates than training alone. In fact, it prescribes smaller learning rates, which further decrease as graphs become larger, failing to explain convergence in infinite graphs. This paper aims to paint an accurate picture of sparsely-connected distributed optimization when workers share the same data distribution. We quantify how the graph topology influences convergence in a quadratic toy problem and provide theoretical results for general smooth and (strongly) convex objectives. Our theory matches empirical observations in deep learning, and accurately describes the relative merits of different graph topologies.
Action recognition is an exciting research avenue for artificial intelligence since it may be a game changer in the emerging industrial fields such as robotic visions and automobiles. However, current deep learning faces major challenges for such applications because of the huge computational cost and the inefficient learning. Hence, we develop a novel brain-inspired Spiking Neural Network (SNN) based system titled Spiking Gating Flow (SGF) for online action learning. The developed system consists of multiple SGF units which assembled in a hierarchical manner. A single SGF unit involves three layers: a feature extraction layer, an event-driven layer and a histogram-based training layer. To demonstrate the developed system capabilities, we employ a standard Dynamic Vision Sensor (DVS) gesture classification as a benchmark. The results indicate that we can achieve 87.5% accuracy which is comparable with Deep Learning (DL), but at smaller training/inference data number ratio 1.5:1. And only a single training epoch is required during the learning process. Meanwhile, to the best of our knowledge, this is the highest accuracy among the non-backpropagation algorithm based SNNs. At last, we conclude the few-shot learning paradigm of the developed network: 1) a hierarchical structure-based network design involves human prior knowledge; 2) SNNs for content based global dynamic feature detection.
Machine reading comprehension (MRC) aims to teach machines to read and comprehend human languages, which is a long-standing goal of natural language processing (NLP). With the burst of deep neural networks and the evolution of contextualized language models (CLMs), the research of MRC has experienced two significant breakthroughs. MRC and CLM, as a phenomenon, have a great impact on the NLP community. In this survey, we provide a comprehensive and comparative review on MRC covering overall research topics about 1) the origin and development of MRC and CLM, with a particular focus on the role of CLMs; 2) the impact of MRC and CLM to the NLP community; 3) the definition, datasets, and evaluation of MRC; 4) general MRC architecture and technical methods in the view of two-stage Encoder-Decoder solving architecture from the insights of the cognitive process of humans; 5) previous highlights, emerging topics, and our empirical analysis, among which we especially focus on what works in different periods of MRC researches. We propose a full-view categorization and new taxonomies on these topics. The primary views we have arrived at are that 1) MRC boosts the progress from language processing to understanding; 2) the rapid improvement of MRC systems greatly benefits from the development of CLMs; 3) the theme of MRC is gradually moving from shallow text matching to cognitive reasoning.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.