This paper deals with the following important research questions. Is it possible to solve challenging advection-dominated diffusion problems in one and two dimensions using Physics Informed Neural Networks (PINN) and Variational Physics Informed Neural Networks (VPINN)? How does it compare to the higher-order and continuity Finite Element Method (FEM)? How to define the loss functions for PINN and VPINN so they converge to the correct solutions? How to select points or test functions for training of PINN and VPINN? We focus on the one-dimensional advection-dominated diffusion problem and the two-dimensional Eriksson-Johnson model problem. We show that the standard Galerkin method for FEM cannot solve this problem. We discuss the stabilization of the advection-dominated diffusion problem with the Petrov-Galerkin (PG) formulation and present the FEM solution obtained with the PG method. We employ PINN and VPINN methods, defining several strong and weak loss functions. We compare the training and solutions of PINN and VPINN methods with higher-order FEM methods.
As we are aware, various types of methods have been proposed to approximate the Caputo fractional derivative numerically. A common challenge of the methods is the non-local property of the Caputo fractional derivative which leads to the slow and memory consuming methods. Diffusive representation of fractional derivative is an efficient tool to overcome the mentioned challenge. This paper presents two new diffusive representations to approximate the Caputo fractional derivative of order $0<\alpha<1$. Error analysis of the newly presented methods together with some numerical examples are provided at the end.
In this research work, we propose a high-order time adapted scheme for pricing a coupled system of fixed-free boundary constant elasticity of variance (CEV) model on both equidistant and locally refined space-grid. The performance of our method is substantially enhanced to improve irregularities in the model which are both inherent and induced. Furthermore, the system of coupled PDEs is strongly nonlinear and involves several time-dependent coefficients that include the first-order derivative of the early exercise boundary. These coefficients are approximated from a fourth-order analytical approximation which is derived using a regularized square-root function. The semi-discrete equation for the option value and delta sensitivity is obtained from a non-uniform fourth-order compact finite difference scheme. Fifth-order 5(4) Dormand-Prince time integration method is used to solve the coupled system of discrete equations. Enhancing the performance of our proposed method with local mesh refinement and adaptive strategies enables us to obtain highly accurate solution with very coarse space grids, hence reducing computational runtime substantially. We further verify the performance of our methodology as compared with some of the well-known and better-performing existing methods.
This work aims at making a comprehensive contribution in the general area of parametric inference for discretely observed diffusion processes. Established approaches for likelihood-based estimation invoke a time-discretisation scheme for the approximation of the intractable transition dynamics of the Stochastic Differential Equation (SDE) model over finite time periods. The scheme is applied for a step-size that is either user-selected or determined by the data. Recent research has highlighted the critical ef-fect of the choice of numerical scheme on the behaviour of derived parameter estimates in the setting of hypo-elliptic SDEs. In brief, in our work, first, we develop two weak second order sampling schemes (to cover both hypo-elliptic and elliptic SDEs) and produce a small time expansion for the density of the schemes to form a proxy for the true intractable SDE transition density. Then, we establish a collection of analytic results for likelihood-based parameter estimates obtained via the formed proxies, thus providing a theoretical framework that showcases advantages from the use of the developed methodology for SDE calibration. We present numerical results from carrying out classical or Bayesian inference, for both elliptic and hypo-elliptic SDEs.
We introduce a general IFS Bayesian method for getting posterior probabilities from prior probabilities, and also a generalized Bayes' rule, which will contemplate a dynamical, as well as a non-dynamical setting. Given a loss function ${l}$, we detail the prior and posterior items, their consequences and exhibit several examples. Taking $\Theta$ as the set of parameters and $Y$ as the set of data (which usually provides {random samples}), a general IFS is a measurable map $\tau:\Theta\times Y \to Y$, which can be interpreted as a family of maps $\tau_\theta:Y\to Y,\,\theta\in\Theta$. The main inspiration for the results we will get here comes from a paper by Zellner (with no dynamics), where Bayes' rule is related to a principle of minimization of {information.} We will show that our IFS Bayesian method which produces posterior probabilities (which are associated to holonomic probabilities) is related to the optimal solution of a variational principle, somehow corresponding to the pressure in Thermodynamic Formalism, and also to the principle of minimization of information in Information Theory. Among other results, we present the prior dynamical elements and we derive the corresponding posterior elements via the Ruelle operator of Thermodynamic Formalism; getting in this way a form of dynamical Bayes' rule.
A general class of the almost instantaneous fixed-to-variable-length (AIFV) codes is proposed, which contains every possible binary code we can make when allowing finite bits of decoding delay. The contribution of the paper lies in the following. (i) Introducing $N$-bit-delay AIFV codes, constructed by multiple code trees with higher flexibility than the conventional AIFV codes. (ii) Proving that the proposed codes can represent any uniquely-encodable and uniquely-decodable variable-to-variable length codes. (iii) Showing how to express codes as multiple code trees with minimum decoding delay. (iv) Formulating the constraints of decodability as the comparison of intervals in the real number line. The theoretical results in this paper are expected to be useful for further study on AIFV codes.
Markov categories have recently turned out to be a powerful high-level framework for probability and statistics. They accommodate purely categorical definitions of notions like conditional probability and almost sure equality, as well as proofs of fundamental results such as the Hewitt-Savage 0/1 Law, the de Finetti Theorem and the Ergodic Decomposition Theorem. In this work, we develop additional relevant notions from probability theory in the setting of Markov categories. This comprises improved versions of previously introduced definitions of absolute continuity and supports, as well as a detailed study of idempotents and idempotent splitting in Markov categories. Our main result on idempotent splitting is that every idempotent measurable Markov kernel between standard Borel spaces splits through another standard Borel space, and we derive this as an instance of a general categorical criterion for idempotent splitting in Markov categories.
We prove a discrete analogue for the composition of the fractional integral and Caputo derivative. This result is relevant in numerical analysis of fractional PDEs when one discretizes the Caputo derivative with the so-called L1 scheme. The proof is based on asymptotic evaluation of the discrete sums with the use of the Euler-Maclaurin summation formula.
Several new network information dimension definitions have been proposed in recent decades, expanding the scope of applicability of this seminal tool. This paper proposes a new definition based on Deng entropy and d-summability (a concept from geometric measure theory). We will prove to what extent the new formulation will be useful in the theoretical and applied points of view.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. Firstly, we analyze the symplectic conditions for two kinds of exponential integrators and obtain the symplectic method. In order to effectively solve highly oscillatory problems, we try to design the highly accurate implicit ERK integrators. By comparing the Taylor series expansion of numerical solution with exact solution, it can be verified that the order conditions of two new kinds of exponential methods are identical to classical Runge-Kutta (RK) methods, which implies that using the coefficients of RK methods, some highly accurate numerical methods are directly formulated. Furthermore, we also investigate the linear stability properties for these exponential methods. Finally, numerical results not only display the long time energy preservation of the symplectic method, but also present the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.
This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language