亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image-grounded dialogue systems benefit greatly from integrating visual information, resulting in high-quality response generation. However, current models struggle to effectively utilize such information in zero-resource scenarios, mainly due to the disparity between image and text modalities. To overcome this challenge, we propose an innovative multimodal framework, called ZRIGF, which assimilates image-grounded information for dialogue generation in zero-resource situations. ZRIGF implements a two-stage learning strategy, comprising contrastive pre-training and generative pre-training. Contrastive pre-training includes a text-image matching module that maps images and texts into a unified encoded vector space, along with a text-assisted masked image modeling module that preserves pre-training visual features and fosters further multimodal feature alignment. Generative pre-training employs a multimodal fusion module and an information transfer module to produce insightful responses based on harmonized multimodal representations. Comprehensive experiments conducted on both text-based and image-grounded dialogue datasets demonstrate ZRIGF's efficacy in generating contextually pertinent and informative responses. Furthermore, we adopt a fully zero-resource scenario in the image-grounded dialogue dataset to demonstrate our framework's robust generalization capabilities in novel domains. The code is available at //github.com/zhangbo-nlp/ZRIGF.

相關內容

We propose OptCtrlPoints, a data-driven framework designed to identify the optimal sparse set of control points for reproducing target shapes using biharmonic 3D shape deformation. Control-point-based 3D deformation methods are widely utilized for interactive shape editing, and their usability is enhanced when the control points are sparse yet strategically distributed across the shape. With this objective in mind, we introduce a data-driven approach that can determine the most suitable set of control points, assuming that we have a given set of possible shape variations. The challenges associated with this task primarily stem from the computationally demanding nature of the problem. Two main factors contribute to this complexity: solving a large linear system for the biharmonic weight computation and addressing the combinatorial problem of finding the optimal subset of mesh vertices. To overcome these challenges, we propose a reformulation of the biharmonic computation that reduces the matrix size, making it dependent on the number of control points rather than the number of vertices. Additionally, we present an efficient search algorithm that significantly reduces the time complexity while still delivering a nearly optimal solution. Experiments on SMPL, SMAL, and DeformingThings4D datasets demonstrate the efficacy of our method. Our control points achieve better template-to-target fit than FPS, random search, and neural-network-based prediction. We also highlight the significant reduction in computation time from days to approximately 3 minutes.

How to accurately learn task-relevant state representations from high-dimensional observations with visual distractions is a realistic and challenging problem in visual reinforcement learning. Recently, unsupervised representation learning methods based on bisimulation metrics, contrast, prediction, and reconstruction have shown the ability for task-relevant information extraction. However, due to the lack of appropriate mechanisms for the extraction of task information in the prediction, contrast, and reconstruction-related approaches and the limitations of bisimulation-related methods in domains with sparse rewards, it is still difficult for these methods to be effectively extended to environments with distractions. To alleviate these problems, in the paper, the action sequences, which contain task-intensive signals, are incorporated into representation learning. Specifically, we propose a Sequential Action--induced invariant Representation (SAR) method, in which the encoder is optimized by an auxiliary learner to only preserve the components that follow the control signals of sequential actions, so the agent can be induced to learn the robust representation against distractions. We conduct extensive experiments on the DeepMind Control suite tasks with distractions while achieving the best performance over strong baselines. We also demonstrate the effectiveness of our method at disregarding task-irrelevant information by deploying SAR to real-world CARLA-based autonomous driving with natural distractions. Finally, we provide the analysis results of generalization drawn from the generalization decay and t-SNE visualization. Code and demo videos are available at //github.com/DMU-XMU/SAR.git.

A good distortion representation is crucial for the success of deep blind image quality assessment (BIQA). However, most previous methods do not effectively model the relationship between distortions or the distribution of samples with the same distortion type but different distortion levels. In this work, we start from the analysis of the relationship between perceptual image quality and distortion-related factors, such as distortion types and levels. Then, we propose a Distortion Graph Representation (DGR) learning framework for IQA, named GraphIQA, in which each distortion is represented as a graph, i.e., DGR. One can distinguish distortion types by learning the contrast relationship between these different DGRs, and infer the ranking distribution of samples from different levels in a DGR. Specifically, we develop two sub-networks to learn the DGRs: a) Type Discrimination Network (TDN) that aims to embed DGR into a compact code for better discriminating distortion types and learning the relationship between types; b) Fuzzy Prediction Network (FPN) that aims to extract the distributional characteristics of the samples in a DGR and predicts fuzzy degrees based on a Gaussian prior. Experiments show that our GraphIQA achieves the state-of-the-art performance on many benchmark datasets of both synthetic and authentic distortions.

We present ExBluRF, a novel view synthesis method for extreme motion blurred images based on efficient radiance fields optimization. Our approach consists of two main components: 6-DOF camera trajectory-based motion blur formulation and voxel-based radiance fields. From extremely blurred images, we optimize the sharp radiance fields by jointly estimating the camera trajectories that generate the blurry images. In training, multiple rays along the camera trajectory are accumulated to reconstruct single blurry color, which is equivalent to the physical motion blur operation. We minimize the photo-consistency loss on blurred image space and obtain the sharp radiance fields with camera trajectories that explain the blur of all images. The joint optimization on the blurred image space demands painfully increasing computation and resources proportional to the blur size. Our method solves this problem by replacing the MLP-based framework to low-dimensional 6-DOF camera poses and voxel-based radiance fields. Compared with the existing works, our approach restores much sharper 3D scenes from challenging motion blurred views with the order of 10 times less training time and GPU memory consumption.

We discuss the emerging new opportunity for building feedback-rich computational models of social systems using generative artificial intelligence. Referred to as Generative Agent-Based Models (GABMs), such individual-level models utilize large language models such as ChatGPT to represent human decision-making in social settings. We provide a GABM case in which human behavior can be incorporated in simulation models by coupling a mechanistic model of human interactions with a pre-trained large language model. This is achieved by introducing a simple GABM of social norm diffusion in an organization. For educational purposes, the model is intentionally kept simple. We examine a wide range of scenarios and the sensitivity of the results to several changes in the prompt. We hope the article and the model serve as a guide for building useful diffusion models that include realistic human reasoning and decision-making.

Self-supervised knowledge-graph completion (KGC) relies on estimating a scoring model over (entity, relation, entity)-tuples, for example, by embedding an initial knowledge graph. Prediction quality can be improved by calibrating the scoring model, typically by adjusting the prediction thresholds using manually annotated examples. In this paper, we attempt for the first time cold-start calibration for KGC, where no annotated examples exist initially for calibration, and only a limited number of tuples can be selected for annotation. Our new method ACTC finds good per-relation thresholds efficiently based on a limited set of annotated tuples. Additionally to a few annotated tuples, ACTC also leverages unlabeled tuples by estimating their correctness with Logistic Regression or Gaussian Process classifiers. We also experiment with different methods for selecting candidate tuples for annotation: density-based and random selection. Experiments with five scoring models and an oracle annotator show an improvement of 7% points when using ACTC in the challenging setting with an annotation budget of only 10 tuples, and an average improvement of 4% points over different budgets.

We present a set of metrics that utilize vision priors to effectively assess the performance of saliency methods on image classification tasks. To understand behavior in deep learning models, many methods provide visual saliency maps emphasizing image regions that most contribute to a model prediction. However, there is limited work on analyzing the reliability of saliency methods in explaining model decisions. We propose the metric COnsistency-SEnsitivity (COSE) that quantifies the equivariant and invariant properties of visual model explanations using simple data augmentations. Through our metrics, we show that although saliency methods are thought to be architecture-independent, most methods could better explain transformer-based models over convolutional-based models. In addition, GradCAM was found to outperform other methods in terms of COSE but was shown to have limitations such as lack of variability for fine-grained datasets. The duality between consistency and sensitivity allow the analysis of saliency methods from different angles. Ultimately, we find that it is important to balance these two metrics for a saliency map to faithfully show model behavior.

We present VAPOR, a novel method for autonomous legged robot navigation in unstructured, densely vegetated outdoor environments using offline Reinforcement Learning (RL). Our method trains a novel RL policy using an actor-critic network and arbitrary data collected in real outdoor vegetation. Our policy uses height and intensity-based cost maps derived from 3D LiDAR point clouds, a goal cost map, and processed proprioception data as state inputs, and learns the physical and geometric properties of the surrounding obstacles such as height, density, and solidity/stiffness. The fully-trained policy's critic network is then used to evaluate the quality of dynamically feasible velocities generated from a novel context-aware planner. Our planner adapts the robot's velocity space based on the presence of entrapment inducing vegetation, and narrow passages in dense environments. We demonstrate our method's capabilities on a Spot robot in complex real-world outdoor scenes, including dense vegetation. We observe that VAPOR's actions improve success rates by up to 40%, decrease the average current consumption by up to 2.9%, and decrease the normalized trajectory length by up to 11.2% compared to existing end-to-end offline RL and other outdoor navigation methods.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

北京阿比特科技有限公司