亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This article discusses the security of McEliece-like encryption schemes using subspace subcodes of Reed-Solomon codes, i.e. subcodes of Reed-Solomon codes over $\mathbb{F}_{q^m}$ whose entries lie in a fixed collection of $\mathbb{F}_q$-subspaces of $\mathbb{F}_{q^m}$. These codes appear to be a natural generalisation of Goppa and alternant codes and provide a broader flexibility in designing code based encryption schemes. For the security analysis, we introduce a new operation on codes called the twisted product which yields a polynomial time distinguisher on such subspace subcodes as soon as the chosen $\mathbb{F}_q$-subspaces have dimension larger than $m/2$. From this distinguisher, we build an efficient attack which in particular breaks some parameters of a recent proposal due to Khathuria, Rosenthal and Weger.

相關內容

With a standardization process that attracted many interest, QUIC can been seen as the next general-purpose transport protocol. Still, it does not provide true multipath support yet, missing some use cases that MPTCP can address. To fill that gap, the IETF recently adopted a multipath proposal merging all the proposed designs. While it focuses on its core components, there still remains one major design issue in the proposal: the number of packet number spaces that should be used. This paper provides experimental results with two different Multipath QUIC implementations based on NS3 simulations to understand the impact of using one packet number space per path or a single packet number space for the whole connection. Our results suggest that using one packet number space per path makes the Multipath QUIC connection more resilient to the receiver's acknowledgment strategy.

Many recent works have proposed methods to train classifiers with local robustness properties, which can provably eliminate classes of evasion attacks for most inputs, but not all inputs. Since data distribution shift is very common in security applications, e.g., often observed for malware detection, local robustness cannot guarantee that the property holds for unseen inputs at the time of deploying the classifier. Therefore, it is more desirable to enforce global robustness properties that hold for all inputs, which is strictly stronger than local robustness. In this paper, we present a framework and tools for training classifiers that satisfy global robustness properties. We define new notions of global robustness that are more suitable for security classifiers. We design a novel booster-fixer training framework to enforce global robustness properties. We structure our classifier as an ensemble of logic rules and design a new verifier to verify the properties. In our training algorithm, the booster increases the classifier's capacity, and the fixer enforces verified global robustness properties following counterexample guided inductive synthesis. We show that we can train classifiers to satisfy different global robustness properties for three security datasets, and even multiple properties at the same time, with modest impact on the classifier's performance. For example, we train a Twitter spam account classifier to satisfy five global robustness properties, with 5.4% decrease in true positive rate, and 0.1% increase in false positive rate, compared to a baseline XGBoost model that doesn't satisfy any property.

A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task. Arguably, its main impact has been in the setting of cryptocurrencies such as Bitcoin and its underlying blockchain protocol, which received significant attention in recent years due to its potential for various applications as well as for solving fundamental distributed computing questions in novel threat models. PoWs enable the linking of blocks in the blockchain data structure and thus the problem of interest is the feasibility of obtaining a sequence (chain) of such proofs. In this work, we examine the hardness of finding such chain of PoWs against quantum strategies. We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity. Effectively, this is an extension of a threshold direct product theorem to an average-case unstructured search problem. Our proof, adding to active recent efforts, simplifies and generalizes the recording technique due to Zhandry (Crypto 2019). In addition, we revisit the formal treatment of security of the core of the Bitcoin consensus protocol, called the Bitcoin backbone (Eurocrypt 2015), against quantum adversaries and show that its security holds under a quantum analogue of the ``honest majority'' assumption that we formulate. Our analysis indicates that security of the Bitcoin backbone protocol is guaranteed provided that the number of adversarial quantum queries is bounded so that each quantum query is worth $O(p^{-1/2})$ classical ones, where $p$ is the probability of success of a single classical query to the protocol's underlying hash function. Somewhat surprisingly, the wait time for safe settlement in the case of quantum adversaries matches the safe settlement time in the classical case.

In this short note, we discuss the Barndorff-Nielsen lemma, which is a generalization of well-known Borel-Cantelli lemma. Although the result stated in the Barndorff-Nielsen lemma is correct, it does not follow from the argument proposed in the corresponding proof. In this note, we show this and offer an alternative proof of this lemma. We also propose a new generalization of Borel-Cantelli lemma.

Given two points A,B in the plane, the locus of all points P for which the angles at A and B in the triangle A,B,P have a constant sum is a circular arc, by Thales' theorem. We show that the difference of these angles is kept a constant by points P on a hyperbola (albeit with foci different from A and B). Whereas hyperbolae are well-known to maintain a constant difference between the distances to their foci, the above angle property seems not to be widely known. The question was motivated by recent work by Alegr\'ia et al. and De Berg et al. on Voronoi diagrams of turning rays.

Let $\{G_i :i\in\N\}$ be a family of finite Abelian groups. We say that a subgroup $G\leq \prod\limits_{i\in \N}G_i$ is \emph{order controllable} if for every $i\in \mathbb{N}$ there is $n_i\in \mathbb{N}$ such that for each $c\in G$, there exists $c_1\in G$ satisfying that $c_{1|[1,i]}=c_{|[1,i]}$, $supp (c_1)\subseteq [1,n_i]$, and order$(c_1)$ divides order$(c_{|[1,n_i]})$. In this paper we investigate the structure of order controllable subgroups. It is proved that every order controllable, profinite, abelian group contains a subset $\{g_n : n\in\N\}$ that topologically generates the group and whose elements $g_n$ all have finite support. As a consequence, sufficient conditions are obtained that allow us to encode, by means of a topological group isomorphism, order controllable profinite abelian groups. Some applications of these results to group codes will appear subsequently \cite{FH:2021}.

Let $\{G_i :i\in\N\}$ be a family of finite Abelian groups. We say that a subgroup $G\leq \prod\limits_{i\in \N}G_i$ is \emph{order controllable} if for every $i\in \mathbb{N}$ there is $n_i\in \mathbb{N}$ such that for each $c\in G$, there exists $c_1\in G$ satisfying that $c_{1|[1,i]}=c_{|[1,i]}$, $supp (c_1)\subseteq [1,n_i]$, and order$(c_1)$ divides order$(c_{|[1,n_i]})$. In this paper we investigate the structure of order controllable group codes. It is proved that if $G$ is an order controllable, shift invariant, group code over a finite abelian group $H$, then $G$ possesses a finite canonical generating set. Furthermore, our construction also yields that $G$ is algebraically conjugate to a full group shift.

Language-based ecosystems (LBE), i.e., software ecosystems based on a single programming language, are very common. Examples include the npm ecosystem for JavaScript, and PyPI for Python. These environments encourage code reuse between packages, and incorporate utilities - package managers - for automatically resolving dependencies. However, the same aspects that make these systems popular - ease of publishing code and importing external code - also create novel security issues, which have so far seen little study. We present an a systematic study of security issues that plague LBEs. These issues are inherent to the ways these ecosystems work and cannot be resolved by fixing software vulnerabilities in either the packages or the utilities, e.g., package manager tools, that build these ecosystems. We systematically characterize recent security attacks from various aspects, including attack strategies, vectors, and goals. Our characterization and in-depth analysis of npm and PyPI ecosystems, which represent the largest LBEs, covering nearly one million packages indicates that these ecosystems make an opportune environment for attackers to incorporate stealthy attacks. Overall, we argue that (i) fully automated detection of malicious packages is likely to be unfeasible; however (ii) tools and metrics that help developers assess the risk of including external dependencies would go a long way toward preventing attacks.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

Kernel methods have produced state-of-the-art results for a number of NLP tasks such as relation extraction, but suffer from poor scalability due to the high cost of computing kernel similarities between discrete natural language structures. A recently proposed technique, kernelized locality-sensitive hashing (KLSH), can significantly reduce the computational cost, but is only applicable to classifiers operating on kNN graphs. Here we propose to use random subspaces of KLSH codes for efficiently constructing an explicit representation of NLP structures suitable for general classification methods. Further, we propose an approach for optimizing the KLSH model for classification problems by maximizing a variational lower bound on mutual information between the KLSH codes (feature vectors) and the class labels. We evaluate the proposed approach on biomedical relation extraction datasets, and observe significant and robust improvements in accuracy w.r.t. state-of-the-art classifiers, along with drastic (orders-of-magnitude) speedup compared to conventional kernel methods.

北京阿比特科技有限公司