亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We investigate an unsuspected connection between logical connectives with non-harmonious deduction rules, such as Prior's tonk, and quantum computing. We argue that these connectives model the information-erasure, the non-reversibility, and the non-determinism that occur, among other places, in quantum measurement. We introduce an intuitionistic propositional logic with a non-harmonious logical connective sup and two interstitial rules, and show that the proof language of this logic forms the core of a quantum programming language.

相關內容

Physical unclonable functions(PUFs) provide a unique fingerprint to a physical entity by exploiting the inherent physical randomness. Gao et al. discussed the vulnerability of most current-day PUFs to sophisticated machine learning-based attacks. We address this problem by integrating classical PUFs and existing quantum communication technology. Specifically, this paper proposes a generic design of provably secure PUFs, called hybrid locked PUFs(HLPUFs), providing a practical solution for securing classical PUFs. An HLPUF uses a classical PUF(CPUF), and encodes the output into non-orthogonal quantum states to hide the outcomes of the underlying CPUF from any adversary. Here we introduce a quantum lock to protect the HLPUFs from any general adversaries. The indistinguishability property of the non-orthogonal quantum states, together with the quantum lockdown technique prevents the adversary from accessing the outcome of the CPUFs. Moreover, we show that by exploiting non-classical properties of quantum states, the HLPUF allows the server to reuse the challenge-response pairs for further client authentication. This result provides an efficient solution for running PUF-based client authentication for an extended period while maintaining a small-sized challenge-response pairs database on the server side. Later, we support our theoretical contributions by instantiating the HLPUFs design using accessible real-world CPUFs. We use the optimal classical machine-learning attacks to forge both the CPUFs and HLPUFs, and we certify the security gap in our numerical simulation for construction which is ready for implementation.

Communication complexity is the amount of communication needed to compute a function when the function inputs are distributed over multiple parties. In its simplest form, one-way communication complexity, Alice and Bob compute a function $f(x,y)$, where $x$ is given to Alice and $y$ is given to Bob, and only one message from Alice to Bob is allowed. A fundamental question in quantum information is the relationship between one-way quantum and classical communication complexities, i.e., how much shorter the message can be if Alice is sending a quantum state instead of bit strings? We make some progress towards this question with the following results. Let $f: \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{Z} \cup \{\bot\}$ be a partial function and $\mu$ be a distribution with support contained in $f^{-1}(\mathcal{Z})$. Denote $d=|\mathcal{Z}|$. Let $\mathsf{R}^{1,\mu}_\epsilon(f)$ be the classical one-way communication complexity of $f$; $\mathsf{Q}^{1,\mu}_\epsilon(f)$ be the quantum one-way communication complexity of $f$ and $\mathsf{Q}^{1,\mu, *}_\epsilon(f)$ be the entanglement-assisted quantum one-way communication complexity of $f$, each with distributional error (average error over $\mu$) at most $\epsilon$. We show: 1) If $\mu$ is a product distribution, $\eta > 0$ and $0 \leq \epsilon \leq 1-1/d$, then, $$\mathsf{R}^{1,\mu}_{2\epsilon -d\epsilon^2/(d-1)+ \eta}(f) \leq 2\mathsf{Q}^{1,\mu, *}_{\epsilon}(f) + O(\log\log (1/\eta))\enspace.$$ 2)If $\mu$ is a non-product distribution and $\mathcal{Z}=\{ 0,1\}$, then $\forall \epsilon, \eta > 0$ such that $\epsilon/\eta + \eta < 0.5$, $$\mathsf{R}^{1,\mu}_{3\eta}(f) = O(\mathsf{Q}^{1,\mu}_{{\epsilon}}(f) \cdot \mathsf{CS}(f)/\eta^3)\enspace,$$ where \[\mathsf{CS}(f) = \max_{y} \min_{z\in\{0,1\}} \vert \{x~|~f(x,y)=z\} \vert \enspace.\]

Bivariate Partial Information Decomposition (PID) describes how the mutual information between a random variable M and two random variables Y and Z is decomposed into unique, redundant, and synergistic terms. Recently, PID has shown promise as an emerging tool to understand biological systems and biases in machine learning. However, computing PID is a challenging problem as it typically involves optimizing over distributions. In this work, we study the problem of computing PID in two systems: the Poisson system inspired by the 'ideal Poisson channel' and the multinomial system inspired by multinomial thinning, for a scalar M. We provide sufficient conditions for both systems under which closed-form expressions for many operationally-motivated PID can be obtained, thereby allowing us to easily compute PID for these systems. Our proof consists of showing that one of the unique information terms is zero, which allows the remaining unique, redundant, and synergistic terms to be easily computed using only the marginal and the joint mutual information.

As the quantum computing community gravitates towards understanding the practical benefits of quantum computers, having a clear definition and evaluation scheme for assessing practical quantum advantage in the context of specific applications is paramount. Generative modeling, for example, is a widely accepted natural use case for quantum computers, and yet has lacked a concrete approach for quantifying success of quantum models over classical ones. In this work, we construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance. Using the sample-based approach proposed here, any generative model, from state-of-the-art classical generative models such as GANs to quantum models such as Quantum Circuit Born Machines, can be evaluated on the same ground on a concrete well-defined framework. In contrast to other sample-based metrics for probing practical generalization, we leverage constrained optimization problems (e.g., cardinality-constrained problems) and use these discrete datasets to define specific metrics capable of unambiguously measuring the quality of the samples and the model's generalization capabilities for generating data beyond the training set but still within the valid solution space. Additionally, our metrics can diagnose trainability issues such as mode collapse and overfitting, as we illustrate when comparing GANs to quantum-inspired models built out of tensor networks. Our simulation results show that our quantum-inspired models have up to a $68 \times$ enhancement in generating unseen unique and valid samples compared to GANs, and a ratio of 61:2 for generating samples with better quality than those observed in the training set. We foresee these metrics as valuable tools for rigorously defining practical quantum advantage in the domain of generative modeling.

Quantum information processing and its subfield, quantum image processing, are rapidly growing fields as a result of advancements in the practicality of quantum mechanics. In this paper, we propose a quantum algorithm for processing information, such as one-dimensional time series and two-dimensional images, in the frequency domain. The information of interest is encoded into the magnitude of probability amplitude or the coefficient of each basis state. The oracle for filtering operates based on postselection results, and its explicit circuit design is presented. This oracle is versatile enough to perform all basic filtering, including high pass, low pass, band pass, band stop, and many other processing techniques. Finally, we present two novel schemes for transposing matrices in this paper. They use similar encoding rules but with deliberate choices in terms of selecting basis states. These schemes could potentially be useful for other quantum information processing tasks, such as edge detection. The proposed techniques are implemented on the IBM Qiskit quantum simulator. Some results are compared with traditional information processing results to verify their correctness and are presented in this paper.

Principled accountability in the aftermath of harms is essential to the trustworthy design and governance of algorithmic decision making. Legal philosophy offers a paramount method for assessing culpability: putting the agent 'on the stand' to subject their actions and intentions to cross-examination. We show that under minimal assumptions automated reasoning can rigorously interrogate algorithmic behaviors as in the adversarial process of legal fact finding. We model accountability processes, such as trials or review boards, as Counterfactual-Guided Logic Exploration and Abstraction Refinement (CLEAR) loops. We use an SMT-based oracle to discharge queries about agent behavior in factual and counterfactual scenarios, as adaptively formulated by a human investigator. For a decision algorithm $\mathcal{A}$, we use symbolic execution to represent its logic as a statement $\Pi$ in the decidable theory $\texttt{QF_FPBV}$. We implement our framework in a tool called $\textsf{soid}$ with an accompanying GUI, and demonstrate its utility on an illustrative car crash scenario.

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

Structural data well exists in Web applications, such as social networks in social media, citation networks in academic websites, and threads data in online forums. Due to the complex topology, it is difficult to process and make use of the rich information within such data. Graph Neural Networks (GNNs) have shown great advantages on learning representations for structural data. However, the non-transparency of the deep learning models makes it non-trivial to explain and interpret the predictions made by GNNs. Meanwhile, it is also a big challenge to evaluate the GNN explanations, since in many cases, the ground-truth explanations are unavailable. In this paper, we take insights of Counterfactual and Factual (CF^2) reasoning from causal inference theory, to solve both the learning and evaluation problems in explainable GNNs. For generating explanations, we propose a model-agnostic framework by formulating an optimization problem based on both of the two casual perspectives. This distinguishes CF^2 from previous explainable GNNs that only consider one of them. Another contribution of the work is the evaluation of GNN explanations. For quantitatively evaluating the generated explanations without the requirement of ground-truth, we design metrics based on Counterfactual and Factual reasoning to evaluate the necessity and sufficiency of the explanations. Experiments show that no matter ground-truth explanations are available or not, CF^2 generates better explanations than previous state-of-the-art methods on real-world datasets. Moreover, the statistic analysis justifies the correlation between the performance on ground-truth evaluation and our proposed metrics.

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical challenges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

小貼士
登錄享
相關主題
北京阿比特科技有限公司