Experts in Artificial Intelligence (AI) development predict that advances in the development of intelligent systems and agents will reshape vital areas in our society. Nevertheless, if such an advance isn't done with prudence, it can result in negative outcomes for humanity. For this reason, several researchers in the area are trying to develop a robust, beneficial, and safe concept of artificial intelligence. Currently, several of the open problems in the field of AI research arise from the difficulty of avoiding unwanted behaviors of intelligent agents, and at the same time specifying what we want such systems to do. It is of utmost importance that artificial intelligent agents have their values aligned with human values, given the fact that we cannot expect an AI to develop our moral preferences simply because of its intelligence, as discussed in the Orthogonality Thesis. Perhaps this difficulty comes from the way we are addressing the problem of expressing objectives, values, and ends, using representational cognitive methods. A solution to this problem would be the dynamic cognitive approach proposed by Dreyfus, whose phenomenological philosophy defends that the human experience of being-in-the-world cannot be represented by the symbolic or connectionist cognitive methods. A possible approach to this problem would be to use theoretical models such as SED (situated embodied dynamics) to address the values learning problem in AI.
We review key considerations, practices, and areas for future work aimed at the responsible development and fielding of AI technologies. We describe critical challenges and make recommendations on topics that should be given priority consideration, practices that should be implemented, and policies that should be defined or updated to reflect developments with capabilities and uses of AI technologies. The Key Considerations were developed with a lens for adoption by U.S. government departments and agencies critical to national security. However, they are relevant more generally for the design, construction, and use of AI systems.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
The very first infected novel coronavirus case (COVID-19) was found in Hubei, China in Dec. 2019. The COVID-19 pandemic has spread over 214 countries and areas in the world, and has significantly affected every aspect of our daily lives. At the time of writing this article, the numbers of infected cases and deaths still increase significantly and have no sign of a well-controlled situation, e.g., as of 13 July 2020, from a total number of around 13.1 million positive cases, 571, 527 deaths were reported in the world. Motivated by recent advances and applications of artificial intelligence (AI) and big data in various areas, this paper aims at emphasizing their importance in responding to the COVID-19 outbreak and preventing the severe effects of the COVID-19 pandemic. We firstly present an overview of AI and big data, then identify the applications aimed at fighting against COVID-19, next highlight challenges and issues associated with state-of-the-art solutions, and finally come up with recommendations for the communications to effectively control the COVID-19 situation. It is expected that this paper provides researchers and communities with new insights into the ways AI and big data improve the COVID-19 situation, and drives further studies in stopping the COVID-19 outbreak.
There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.
This paper presents a new approach to prevent transportation accidents and monitor driver's behavior using a healthcare AI system that incorporates fairness and ethics. Dangerous medical cases and unusual behavior of the driver are detected. Fairness algorithm is approached in order to improve decision-making and address ethical issues such as privacy issues, and to consider challenges that appear in the wild within AI in healthcare and driving. A healthcare professional will be alerted about any unusual activity, and the driver's location when necessary, is provided in order to enable the healthcare professional to immediately help to the unstable driver. Therefore, using the healthcare AI system allows for accidents to be predicted and thus prevented and lives may be saved based on the built-in AI system inside the vehicle which interacts with the ER system.
Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.
Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.
To make deliberate progress towards more intelligent and more human-like artificial systems, we need to be following an appropriate feedback signal: we need to be able to define and evaluate intelligence in a way that enables comparisons between two systems, as well as comparisons with humans. Over the past hundred years, there has been an abundance of attempts to define and measure intelligence, across both the fields of psychology and AI. We summarize and critically assess these definitions and evaluation approaches, while making apparent the two historical conceptions of intelligence that have implicitly guided them. We note that in practice, the contemporary AI community still gravitates towards benchmarking intelligence by comparing the skill exhibited by AIs and humans at specific tasks such as board games and video games. We argue that solely measuring skill at any given task falls short of measuring intelligence, because skill is heavily modulated by prior knowledge and experience: unlimited priors or unlimited training data allow experimenters to "buy" arbitrary levels of skills for a system, in a way that masks the system's own generalization power. We then articulate a new formal definition of intelligence based on Algorithmic Information Theory, describing intelligence as skill-acquisition efficiency and highlighting the concepts of scope, generalization difficulty, priors, and experience. Using this definition, we propose a set of guidelines for what a general AI benchmark should look like. Finally, we present a benchmark closely following these guidelines, the Abstraction and Reasoning Corpus (ARC), built upon an explicit set of priors designed to be as close as possible to innate human priors. We argue that ARC can be used to measure a human-like form of general fluid intelligence and that it enables fair general intelligence comparisons between AI systems and humans.
Machine learning is a popular approach to signatureless malware detection because it can generalize to never-before-seen malware families and polymorphic strains. This has resulted in its practical use for either primary detection engines or for supplementary heuristic detection by anti-malware vendors. Recent work in adversarial machine learning has shown that deep learning models are susceptible to gradient-based attacks, whereas non-differentiable models that report a score can be attacked by genetic algorithms that aim to systematically reduce the score. We propose a more general framework based on reinforcement learning (RL) for attacking static portable executable (PE) anti-malware engines. The general framework does not require a differentiable model nor does it require the engine to produce a score. Instead, an RL agent is equipped with a set of functionality-preserving operations that it may perform on the PE file. Through a series of games played against the anti-malware engine, it learns which sequences of operations are likely to result in evading the detector for any given malware sample. This enables completely black-box attacks against static PE anti-malware, and produces functional evasive malware samples as a direct result. We show in experiments that our method can attack a gradient-boosted machine learning model with evasion rates that are substantial and appear to be strongly dependent on the dataset. We demonstrate that attacks against this model appear to also evade components of publicly hosted antivirus engines. Adversarial training results are also presented: by retraining the model on evasive ransomware samples, a subsequent attack is 33% less effective. However, there are overfitting dangers when adversarial training, which we note. We release code to allow researchers to reproduce and improve this approach.
We explore the use of deep learning hierarchical models for problems in financial prediction and classification. Financial prediction problems -- such as those presented in designing and pricing securities, constructing portfolios, and risk management -- often involve large data sets with complex data interactions that currently are difficult or impossible to specify in a full economic model. Applying deep learning methods to these problems can produce more useful results than standard methods in finance. In particular, deep learning can detect and exploit interactions in the data that are, at least currently, invisible to any existing financial economic theory.