亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents a new approach to prevent transportation accidents and monitor driver's behavior using a healthcare AI system that incorporates fairness and ethics. Dangerous medical cases and unusual behavior of the driver are detected. Fairness algorithm is approached in order to improve decision-making and address ethical issues such as privacy issues, and to consider challenges that appear in the wild within AI in healthcare and driving. A healthcare professional will be alerted about any unusual activity, and the driver's location when necessary, is provided in order to enable the healthcare professional to immediately help to the unstable driver. Therefore, using the healthcare AI system allows for accidents to be predicted and thus prevented and lives may be saved based on the built-in AI system inside the vehicle which interacts with the ER system.

相關內容

Increasing problems in the transportation segment are accidents, bad traffic flow and pollution. The Intelligent Transportation System with the use of external infrastructure (ITS) can tackle these problems. To the best of our knowledge, there exists no current systematic review of the existing solutions. To fill this knowledge gap, this paper provides an overview about existing ITS which use external infrastructure. Furthermore, this paper discovers the currently not adequately answered research questions. For this reason, we performed a literature review to documents, which describes existing ITS solutions since 2009 until today. We categorized the results according to his technology level and analyzed their properties. Thereby, we made the several ITS comparable and highlighted the past development as well as the current trends. According to the mentioned method, we analyzed more than 346 papers, which includes 40 test bed projects. In summary, the current ITS can deliver high accurate information about individuals in traffic situations in real-time. However, further research in ITS should focus on more reliable perception of the traffic with the use of modern sensors, plug and play mechanism as well as secure real-time distribution in decentralized manner for a high amount of data. With addressing these topics, the development of Intelligent Transportation Systems is in a correction direction for the comprehensive roll-out.

As a worldwide pandemic, the coronavirus disease-19 (COVID-19) has caused serious restrictions in people's social life, along with the loss of lives, the collapse of economies and the disruption of humanitarian aids. Despite the advance of technological developments, we, as researchers, have witnessed that several issues need further investigation for a better response to a pandemic outbreak. With this motivation, researchers recently started developing ideas to stop or at least reduce the spread of the pandemic. While there have been some prior works on wireless networks for combating a pandemic scenario, vehicular networks and their potential bottlenecks have not yet been fully examined. This article provides an extensive discussion on vehicular networking for combating a pandemic. We provide the major applications of vehicular networking for combating COVID-19 in public transportation, in-vehicle diagnosis, border patrol and social distance monitoring. Next, we identify the unique characteristics of the collected data in terms of privacy, flexibility and coverage, then highlight corresponding future directions in privacy preservation, resource allocation, data caching and data routing. We believe that this work paves the way for the development of new products and algorithms that can facilitate the social life and help controlling the spread of the pandemic.

The environmental perception of an autonomous vehicle is limited by its physical sensor ranges and algorithmic performance, as well as by occlusions that degrade its understanding of an ongoing traffic situation. This not only poses a significant threat to safety and limits driving speeds, but it can also lead to inconvenient maneuvers. Intelligent Infrastructure Systems can help to alleviate these problems. An Intelligent Infrastructure System can fill in the gaps in a vehicle's perception and extend its field of view by providing additional detailed information about its surroundings, in the form of a digital model of the current traffic situation, i.e. a digital twin. However, detailed descriptions of such systems and working prototypes demonstrating their feasibility are scarce. In this paper, we propose a hardware and software architecture that enables such a reliable Intelligent Infrastructure System to be built. We have implemented this system in the real world and demonstrate its ability to create an accurate digital twin of an extended highway stretch, thus enhancing an autonomous vehicle's perception beyond the limits of its on-board sensors. Furthermore, we evaluate the accuracy and reliability of the digital twin by using aerial images and earth observation methods for generating ground truth data.

Like many governments, the Norwegian government provided a contact tracing application to help in combating the COVID-19 pandemic at its outset. However, the application was widely criticized for enabling an unacceptable intrusion into its subjects' lives, leading to its discontinuation only four months into the pandemic. In this essay, we will take a closer look at what went wrong, attempt to gain a deeper understanding of the passionate nature of the conflict, and how both sides came to view the other as being either stupid, or evil, or both.

Gas turbine engines are complex machines that typically generate a vast amount of data, and require careful monitoring to allow for cost-effective preventative maintenance. In aerospace applications, returning all measured data to ground is prohibitively expensive, often causing useful, high value, data to be discarded. The ability to detect, prioritise, and return useful data in real-time is therefore vital. This paper proposes that system output measurements, described by a convolutional neural network model of normality, are prioritised in real-time for the attention of preventative maintenance decision makers. Due to the complexity of gas turbine engine time-varying behaviours, deriving accurate physical models is difficult, and often leads to models with low prediction accuracy and incompatibility with real-time execution. Data-driven modelling is a desirable alternative producing high accuracy, asset specific models without the need for derivation from first principles. We present a data-driven system for online detection and prioritisation of anomalous data. Biased data assessment deriving from novel operating conditions is avoided by uncertainty management integrated into the deep neural predictive model. Testing is performed on real and synthetic data, showing sensitivity to both real and synthetic faults. The system is capable of running in real-time on low-power embedded hardware and is currently in deployment on the Rolls-Royce Pearl 15 engine flight trials.

Objective: Improving geographical access remains a key issue in determining the sufficiency of regional medical resources during health policy design. However, patient choices can be the result of the complex interactivity of various factors. The aim of this study is to propose a deep neural network approach to model the complex decision of patient choice in travel distance to access care, which is an important indicator for policymaking in allocating resources. Method: We used the 4-year nationwide insurance data of Taiwan and accumulated the possible features discussed in earlier literature. This study proposes the use of a convolutional neural network (CNN)-based framework to make predictions. The model performance was tested against other machine learning methods. The proposed framework was further interpreted using Integrated Gradients (IG) to analyze the feature weights. Results: We successfully demonstrated the effectiveness of using a CNN-based framework to predict the travel distance of patients, achieving an accuracy of 0.968, AUC of 0.969, sensitivity of 0.960, and specificity of 0.989. The CNN-based framework outperformed all other methods. In this research, the IG weights are potentially explainable; however, the relationship does not correspond to known indicators in public health, similar to common consensus. Conclusions: Our results demonstrate the feasibility of the deep learning-based travel distance prediction model. It has the potential to guide policymaking in resource allocation.

As the globally increasing population drives rapid urbanisation in various parts of the world, there is a great need to deliberate on the future of the cities worth living. In particular, as modern smart cities embrace more and more data-driven artificial intelligence services, it is worth remembering that technology can facilitate prosperity, wellbeing, urban livability, or social justice, but only when it has the right analog complements (such as well-thought out policies, mature institutions, responsible governance); and the ultimate objective of these smart cities is to facilitate and enhance human welfare and social flourishing. Researchers have shown that various technological business models and features can in fact contribute to social problems such as extremism, polarization, misinformation, and Internet addiction. In the light of these observations, addressing the philosophical and ethical questions involved in ensuring the security, safety, and interpretability of such AI algorithms that will form the technological bedrock of future cities assumes paramount importance. Globally there are calls for technology to be made more humane and human-centered. In this paper, we analyze and explore key challenges including security, robustness, interpretability, and ethical (data and algorithmic) challenges to a successful deployment of AI in human-centric applications, with a particular emphasis on the convergence of these concepts/challenges. We provide a detailed review of existing literature on these key challenges and analyze how one of these challenges may lead to others or help in solving other challenges. The paper also advises on the current limitations, pitfalls, and future directions of research in these domains, and how it can fill the current gaps and lead to better solutions. We believe such rigorous analysis will provide a baseline for future research in the domain.

Technology evolves quickly. Low-cost and ready-to-connect devices are designed to provide new services and applications. Smart grids or smart healthcare systems are some examples of these applications, all of which are in the context of smart cities. In this total-connectivity scenario, some security issues arise since the larger the number of connected devices is, the greater the surface attack dimension. In this way, new solutions for monitoring and detecting security events are needed to address new challenges brought about by this scenario, among others, the large number of devices to monitor, the large amount of data to manage and the real-time requirement to provide quick security event detection and, consequently, quick response to attacks. In this work, a practical and ready-to-use tool for monitoring and detecting security events in these environments is developed and introduced. The tool is based on the Multivariate Statistical Network Monitoring (MSNM) methodology for monitoring and anomaly detection and we call it MSNM-Sensor. Although it is in its early development stages, experimental results based on the detection of well-known attacks in hierarchical network systems prove the suitability of this tool for more complex scenarios, such as those found in smart cities or IoT ecosystems.

The increasing availability of large collections of electronic health record (EHR) data and unprecedented technical advances in deep learning (DL) have sparked a surge of research interest in developing DL based clinical decision support systems for diagnosis, prognosis, and treatment. Despite the recognition of the value of deep learning in healthcare, impediments to further adoption in real healthcare settings remain due to the black-box nature of DL. Therefore, there is an emerging need for interpretable DL, which allows end users to evaluate the model decision making to know whether to accept or reject predictions and recommendations before an action is taken. In this review, we focus on the interpretability of the DL models in healthcare. We start by introducing the methods for interpretability in depth and comprehensively as a methodological reference for future researchers or clinical practitioners in this field. Besides the methods' details, we also include a discussion of advantages and disadvantages of these methods and which scenarios each of them is suitable for, so that interested readers can know how to compare and choose among them for use. Moreover, we discuss how these methods, originally developed for solving general-domain problems, have been adapted and applied to healthcare problems and how they can help physicians better understand these data-driven technologies. Overall, we hope this survey can help researchers and practitioners in both artificial intelligence (AI) and clinical fields understand what methods we have for enhancing the interpretability of their DL models and choose the optimal one accordingly.

There is a need for systems to dynamically interact with ageing populations to gather information, monitor health condition and provide support, especially after hospital discharge or at-home settings. Several smart devices have been delivered by digital health, bundled with telemedicine systems, smartphone and other digital services. While such solutions offer personalised data and suggestions, the real disruptive step comes from the interaction of new digital ecosystem, represented by chatbots. Chatbots will play a leading role by embodying the function of a virtual assistant and bridging the gap between patients and clinicians. Powered by AI and machine learning algorithms, chatbots are forecasted to save healthcare costs when used in place of a human or assist them as a preliminary step of helping to assess a condition and providing self-care recommendations. This paper describes integrating chatbots into telemedicine systems intended for elderly patient after their hospital discharge. The paper discusses possible ways to utilise chatbots to assist healthcare providers and support patients with their condition.

北京阿比特科技有限公司