亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This is Part II of our paper in which we prove finite time blowup of the 2D Boussinesq and 3D axisymmetric Euler equations with smooth initial data of finite energy and boundary. In Part I of our paper [ChenHou2023a], we establish an analytic framework to prove stability of an approximate self-similar blowup profile by a combination of a weighted $L^\infty$ norm and a weighted $C^{1/2}$ norm. Under the assumption that the stability constants, which depend on the approximate steady state, satisfy certain inequalities stated in our stability lemma, we prove stable nearly self-similar blowup of the 2D Boussinesq and 3D Euler equations with smooth initial data and boundary. In Part II of our paper, we provide sharp stability estimates of the linearized operator by constructing space-time solutions with rigorous error control. We also obtain sharp estimates of the velocity in the regular case using computer assistance. These results enable us to verify that the stability constants obtained in Part I [ChenHou2023a] indeed satisfy the inequalities in our stability lemma. This completes the analysis of the finite time singularity of the axisymmetric Euler equations with smooth initial data and boundary.

相關內容

This paper proposes novel computational multiscale methods for linear second-order elliptic partial differential equations in nondivergence-form with heterogeneous coefficients satisfying a Cordes condition. The construction follows the methodology of localized orthogonal decomposition (LOD) and provides operator-adapted coarse spaces by solving localized cell problems on a fine scale in the spirit of numerical homogenization. The degrees of freedom of the coarse spaces are related to nonconforming and mixed finite element methods for homogeneous problems. The rigorous error analysis of one exemplary approach shows that the favorable properties of the LOD methodology known from divergence-form PDEs, i.e., its applicability and accuracy beyond scale separation and periodicity, remain valid for problems in nondivergence-form.

This paper introduces general methodologies for constructing closed-form solutions to several important partial differential equations (PDEs) with polynomial right-hand sides in two and three spatial dimensions. The covered equations include the isotropic and anisotropic Poisson, Helmholtz, Stokes, and elastostatic equations, as well as the time-harmonic linear elastodynamic and Maxwell equations. Polynomial solutions have recently regained significance in the development of numerical techniques for evaluating volume integral operators and have potential applications in certain kinds of Trefftz finite element methods. Our approach to all of these PDEs relates the particular solution to polynomial solutions of the Poisson and Helmholtz polynomial particular solutions, solutions that can in turn be obtained, respectively, from expansions using homogeneous polynomials and the Neumann series expansion of the operator $(k^2+\Delta)^{-1}$. No matrix inversion is required to compute the solution. The method naturally incorporates divergence constraints on the solution, such as in the case of Maxwell and Stokes flow equations. This work is accompanied by a freely available Julia library, \texttt{PolynomialSolutions.jl}, which implements the proposed methodology in a non-symbolic format and efficiently constructs and provides access to rapid evaluation of the desired solution.

The small size, high dexterity, and intrinsic compliance of continuum robots (CRs) make them well suited for constrained environments. Solving the inverse kinematics (IK), that is finding robot joint configurations that satisfy desired position or pose queries, is a fundamental challenge in motion planning, control, and calibration for any robot structure. For CRs, the need to avoid obstacles in tightly confined workspaces greatly complicates the search for feasible IK solutions. Without an accurate initialization or multiple re-starts, existing algorithms often fail to find a solution. We present CIDGIKc (Convex Iteration for Distance-Geometric Inverse Kinematics for Continuum Robots), an algorithm that solves these nonconvex feasibility problems with a sequence of semidefinite programs whose objectives are designed to encourage low-rank minimizers. CIDGIKc is enabled by a novel distance-geometric parameterization of constant curvature segment geometry for CRs with extensible segments. The resulting IK formulation involves only quadratic expressions and can efficiently incorporate a large number of collision avoidance constraints. Our experimental results demonstrate >98% solve success rates within complex, highly cluttered environments which existing algorithms cannot account for.

Currently, over half of the computing power at CERN GRID is used to run High Energy Physics simulations. The recent updates at the Large Hadron Collider (LHC) create the need for developing more efficient simulation methods. In particular, there exists a demand for a fast simulation of the neutron Zero Degree Calorimeter, where existing Monte Carlo-based methods impose a significant computational burden. We propose an alternative approach to the problem that leverages machine learning. Our solution utilises neural network classifiers and generative models to directly simulate the response of the calorimeter. In particular, we examine the performance of variational autoencoders and generative adversarial networks, expanding the GAN architecture by an additional regularisation network and a simple, yet effective postprocessing step. Our approach increases the simulation speed by 2 orders of magnitude while maintaining the high fidelity of the simulation.

We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a $\mathcal{C}^2$ boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach.

This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.

We focus on analyzing the classical stochastic projected gradient methods under a general dependent data sampling scheme for constrained smooth nonconvex optimization. We show the worst-case rate of convergence $\tilde{O}(t^{-1/4})$ and complexity $\tilde{O}(\varepsilon^{-4})$ for achieving an $\varepsilon$-near stationary point in terms of the norm of the gradient of Moreau envelope and gradient mapping. While classical convergence guarantee requires i.i.d. data sampling from the target distribution, we only require a mild mixing condition of the conditional distribution, which holds for a wide class of Markov chain sampling algorithms. This improves the existing complexity for the constrained smooth nonconvex optimization with dependent data from $\tilde{O}(\varepsilon^{-8})$ to $\tilde{O}(\varepsilon^{-4})$ with a significantly simpler analysis. We illustrate the generality of our approach by deriving convergence results with dependent data for stochastic proximal gradient methods, adaptive stochastic gradient algorithm AdaGrad and stochastic gradient algorithm with heavy ball momentum. As an application, we obtain first online nonnegative matrix factorization algorithms for dependent data based on stochastic projected gradient methods with adaptive step sizes and optimal rate of convergence.

Atmospheric systems incorporating thermal dynamics must be stable with respect to both energy and entropy. While energy conservation can be enforced via the preservation of the skew-symmetric structure of the Hamiltonian form of the equations of motion, entropy conservation is typically derived as an additional invariant of the Hamiltonian system, and satisfied via the exact preservation of the chain rule. This is particularly challenging since the function spaces used to represent the thermodynamic variables in compatible finite element discretisations are typically discontinuous at element boundaries. In the present work we negate this problem by constructing our equations of motion via weighted averages of skew-symmetric formulations using both flux form and material form advection of thermodynamic variables, which allow for the necessary cancellations required to conserve entropy without the chain rule. We show that such formulations allow for stable simulations of both the thermal shallow water and 3D compressible Euler equations on the sphere using mixed compatible finite elements without entropy damping.

In this paper, a time-domain discontinuous Galerkin (TDdG) finite element method for the full system of Maxwell's equations in optics and photonics is investigated, including a complete proof of a semi-discrete error estimate. The new capabilities of methods of this type are to efficiently model linear and nonlinear effects, for example of Kerr nonlinearities. Energy stable discretizations both at the semi-discrete and the fully discrete levels are presented. In particular, the proposed semi-discrete scheme is optimally convergent in the spatial variable on Cartesian meshes with $Q_k$-type elements, and the fully discrete scheme is conditionally stable with respect to a specially defined nonlinear electromagnetic energy. The approaches presented prove to be robust and allow the modeling of optical problems and the treatment of complex nonlinearities as well as geometries of various physical systems coupled with electromagnetic fields.

A general class of hybrid models has been introduced recently, gathering the advantages multiscale descriptions. Concerning biological applications, the particular coupled structure fits to collective cell migrations and pattern formation scenarios. In this context, cells are modelled as discrete entities and their dynamics is given by ODEs, while the chemical signal influencing the motion is considered as a continuous signal which solves a diffusive equation. From the analytical point of view, this class of model has been proved to have a mean-field limit in the Wasserstein distance towards a system given by the coupling of a Vlasov-type equation with the chemoattractant equation. Moreover, a pressureless nonlocal Euler-type system has been derived for these models, rigorously equivalent to the Vlasov one for monokinetic initial data. In the present paper, we present a numerical study of the solutions to the Vlasov and Euler systems, exploring general settings for inital data, far from the monokinetic ones.

北京阿比特科技有限公司