亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce an extension of first-order logic that comes equipped with additional predicates for reasoning about an abstract state. Sequents in the logic comprise a main formula together with pre- and postconditions in the style of Hoare logic, and the axioms and rules of the logic ensure that the assertions about the state compose in the correct way. The main result of the paper is a realizability interpretation of our logic that extracts programs into a mixed functional/imperative language. All programs expressible in this language act on the state in a sequential manner, and we make this intuition precise by interpreting them in a semantic metatheory using the state monad. Our basic framework is very general, and our intention is that it can be instantiated and extended in a variety of different ways. We outline in detail one such extension: A monadic version of Heyting arithmetic with a wellfounded while rule, and conclude by outlining several other directions for future work.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Subspace clustering methods which embrace a self-expressive model that represents each data point as a linear combination of other data points in the dataset provide powerful unsupervised learning techniques. However, when dealing with large datasets, representation of each data point by referring to all data points via a dictionary suffers from high computational complexity. To alleviate this issue, we introduce a parallelizable multi-subset based self-expressive model (PMS) which represents each data point by combining multiple subsets, with each consisting of only a small proportion of the samples. The adoption of PMS in subspace clustering (PMSSC) leads to computational advantages because the optimization problems decomposed over each subset are small, and can be solved efficiently in parallel. Furthermore, PMSSC is able to combine multiple self-expressive coefficient vectors obtained from subsets, which contributes to an improvement in self-expressiveness. Extensive experiments on synthetic and real-world datasets show the efficiency and effectiveness of our approach in comparison to other methods.

We introduce a proof-theoretic method for showing nondefinability of second-order intuitionistic connectives by quantifier-free schemata. We apply the method to confirm that Taranovsky's "realizability disjunction" connective does not admit a quantifier-free definition, and use it to obtain new results and more nuanced information about the nondefinability of Kreisel's and Po{\l}acik's unary connectives. The finitary and combinatorial nature of our method makes it more resilient to changes in metatheory than common semantic approaches, whose robustness tends to waver once we pass to non-classical and especially anti-classical settings. Furthermore, we can easily transcribe the problem-specific subproofs into univalent type theory and check them using the Agda proof assistant.

Adversarially robust streaming algorithms are required to process a stream of elements and produce correct outputs, even when each stream element can be chosen depending on earlier algorithm outputs. As with classic streaming algorithms, which must only be correct for the worst-case fixed stream, adversarially robust algorithms with access to randomness can use significantly less space than deterministic algorithms. We prove that for the Missing Item Finding problem in streaming, the space complexity also significantly depends on how adversarially robust algorithms are permitted to use randomness. (In contrast, the space complexity of classic streaming algorithms does not depend as strongly on the way randomness is used.) For Missing Item Finding on streams of length $r$ with elements in $\{1,...n\}$, and $\le 1/\text{poly}(n)$ error, we show that when $r = O(2^{\sqrt{\log n}})$, "random seed" adversarially robust algorithms, which only use randomness at initialization, require $r^{\Omega(1)}$ bits of space, while "random tape" adversarially robust algorithms, which may make random decisions at any time, may use $O(\text{polylog}(r))$ random bits. When $r = \Theta(\sqrt{n})$, "random tape" adversarially robust algorithms need $r^{\Omega(1)}$ space, while "random oracle" adversarially robust algorithms, which can read from a long random string for free, may use $O(\text{polylog}(r))$ space. The space lower bound for the "random seed" case follows, by a reduction given in prior work, from a lower bound for pseudo-deterministic streaming algorithms given in this paper.

We present a priori error estimates for a multirate time-stepping scheme for coupled differential equations. The discretization is based on Galerkin methods in time using two different time meshes for two parts of the problem. We aim at surface coupled multiphysics problems like two-phase flows. Special focus is on the handling of the interface coupling to guarantee a coercive formulation as key to optimal order error estimates. In a sequence of increasing complexity, we begin with the coupling of two ordinary differential equations, coupled heat conduction equation, and finally a coupled Stokes problem. For this we show optimal multi-rate estimates in velocity and a suboptimal result in pressure. The a priori estimates prove that the multirate method decouples the two subproblems exactly. This is the basis for adaptive methods which can choose optimal lattices for the respective subproblems.

Recently, Sato et al. proposed an public verifiable blind quantum computation (BQC) protocol by inserting a third-party arbiter. However, it is not true public verifiable in a sense, because the arbiter is determined in advance and participates in the whole process. In this paper, a public verifiable protocol for measurement-only BQC is proposed. The fidelity between arbitrary states and the graph states of 2-colorable graphs is estimated by measuring the entanglement witnesses of the graph states,so as to verify the correctness of the prepared graph states. Compared with the previous protocol, our protocol is public verifiable in the true sense by allowing other random clients to execute the public verification. It also has greater advantages in the efficiency, where the number of local measurements is O(n^3*log {n}) and graph states' copies is O(n^2*log{n}).

Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A.

A finite element based computational scheme is developed and employed to assess a duality based variational approach to the solution of the linear heat and transport PDE in one space dimension and time, and the nonlinear system of ODEs of Euler for the rotation of a rigid body about a fixed point. The formulation turns initial-(boundary) value problems into degenerate elliptic boundary value problems in (space)-time domains representing the Euler-Lagrange equations of suitably designed dual functionals in each of the above problems. We demonstrate reasonable success in approximating solutions of this range of parabolic, hyperbolic, and ODE primal problems, which includes energy dissipation as well as conservation, by a unified dual strategy lending itself to a variational formulation. The scheme naturally associates a family of dual solutions to a unique primal solution; such `gauge invariance' is demonstrated in our computed solutions of the heat and transport equations, including the case of a transient dual solution corresponding to a steady primal solution of the heat equation. Primal evolution problems with causality are shown to be correctly approximated by non-causal dual problems.

Generalized cross-validation (GCV) is a widely-used method for estimating the squared out-of-sample prediction risk that employs a scalar degrees of freedom adjustment (in a multiplicative sense) to the squared training error. In this paper, we examine the consistency of GCV for estimating the prediction risk of arbitrary ensembles of penalized least squares estimators. We show that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this shortcoming, we identify a correction that involves an additional scalar correction (in an additive sense) based on degrees of freedom adjusted training errors from each ensemble component. The proposed estimator (termed CGCV) maintains the computational advantages of GCV and requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator stems from a finer inspection of ensemble risk decomposition and two intermediate risk estimators for the components in this decomposition. We provide a non-asymptotic analysis of the CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators under Gaussian features and a linear response model. In the special case of ridge regression, we extend the analysis to general feature and response distributions using random matrix theory, which establishes model-free uniform consistency of CGCV.

This article is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under $s$-Gevrey assumptions on on the residual equation, we establish $s$-Gevrey bounds on the Fr\'echet derivatives of the local data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.

Fitted finite element methods are constructed for a singularly perturbed convection-diffusion problem in two space dimensions. Exponential splines as basis functions are combined with Shishkin meshes to obtain a stable parameter-uniform numerical method. These schemes satisfy a discrete maximum principle. In the classical case, the numerical approximations converge, in the maximum pointwise norm, at a rate of second order and the approximations converge at a rate of first order for all values of the singular perturbation parameter.

北京阿比特科技有限公司