Singular value decomposition (SVD) is the mathematical basis of principal component analysis (PCA). Together, SVD and PCA are one of the most widely used mathematical formalism/decomposition in machine learning, data mining, pattern recognition, artificial intelligence, computer vision, signal processing, etc. In recent applications, regularization becomes an increasing trend. In this paper, we present a regularized SVD (RSVD), present an efficient computational algorithm, and provide several theoretical analysis. We show that although RSVD is non-convex, it has a closed-form global optimal solution. Finally, we apply RSVD to the application of recommender system and experimental result show that RSVD outperforms SVD significantly.
To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.
We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differentiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-the-art recommendation methods.
Most existing recommender systems leverage the data of one type of user behaviors only, such as the purchase behavior in E-commerce that is directly related to the business KPI (Key Performance Indicator) of conversion rate. Besides the key behavioral data, we argue that other forms of user behaviors also provide valuable signal on a user's preference, such as views, clicks, adding a product to shop carts and so on. They should be taken into account properly to provide quality recommendation for users. In this work, we contribute a novel solution named NMTR (short for Neural Multi-Task Recommendation) for learning recommender systems from multiple types of user behaviors. We develop a neural network model to capture the complicated and multi-type interactions between users and items. In particular, our model accounts for the cascading relationship among behaviors (e.g., a user must click on a product before purchasing it). To fully exploit the signal in the data of multiple types of behaviors, we perform a joint optimization based on the multi-task learning framework, where the optimization on a behavior is treated as a task. Extensive experiments on two real-world datasets demonstrate that NMTR significantly outperforms state-of-the-art recommender systems that are designed to learn from both single-behavior data and multi-behavior data. Further analysis shows that modeling multiple behaviors is particularly useful for providing recommendation for sparse users that have very few interactions.
Model-based methods for recommender systems have been studied extensively in recent years. In systems with large corpus, however, the calculation cost for the learnt model to predict all user-item preferences is tremendous, which makes full corpus retrieval extremely difficult. To overcome the calculation barriers, models such as matrix factorization resort to inner product form (i.e., model user-item preference as the inner product of user, item latent factors) and indexes to facilitate efficient approximate k-nearest neighbor searches. However, it still remains challenging to incorporate more expressive interaction forms between user and item features, e.g., interactions through deep neural networks, because of the calculation cost. In this paper, we focus on the problem of introducing arbitrary advanced models to recommender systems with large corpus. We propose a novel tree-based method which can provide logarithmic complexity w.r.t. corpus size even with more expressive models such as deep neural networks. Our main idea is to predict user interests from coarse to fine by traversing tree nodes in a top-down fashion and making decisions for each user-node pair. We also show that the tree structure can be jointly learnt towards better compatibility with users' interest distribution and hence facilitate both training and prediction. Experimental evaluations with two large-scale real-world datasets show that the proposed method significantly outperforms traditional methods. Online A/B test results in Taobao display advertising platform also demonstrate the effectiveness of the proposed method in production environments.
In this paper, we study the problem of modeling users' diverse interests. Previous methods usually learn a fixed user representation, which has a limited ability to represent distinct interests of a user. In order to model users' various interests, we propose a Memory Attention-aware Recommender System (MARS). MARS utilizes a memory component and a novel attentional mechanism to learn deep \textit{adaptive user representations}. Trained in an end-to-end fashion, MARS adaptively summarizes users' interests. In the experiments, MARS outperforms seven state-of-the-art methods on three real-world datasets in terms of recall and mean average precision. We also demonstrate that MARS has a great interpretability to explain its recommendation results, which is important in many recommendation scenarios.
Personalized recommendation systems (RS) are extensively used in many services. Many of these are based on learning algorithms where the RS uses the recommendation history and the user response to learn an optimal strategy. Further, these algorithms are based on the assumption that the user interests are rigid. Specifically, they do not account for the effect of learning strategy on the evolution of the user interests. In this paper we develop influence models for a learning algorithm that is used to optimally recommend websites to web users. We adapt the model of \cite{Ioannidis10} to include an item-dependent reward to the RS from the suggestions that are accepted by the user. For this we first develop a static optimisation scheme when all the parameters are known. Next we develop a stochastic approximation based learning scheme for the RS to learn the optimal strategy when the user profiles are not known. Finally, we describe several user-influence models for the learning algorithm and analyze their effect on the steady user interests and on the steady state optimal strategy as compared to that when the users are not influenced.
Recommender systems are one of the most successful applications of data mining and machine learning technology in practice. Academic research in the field is historically often based on the matrix completion problem formulation, where for each user-item-pair only one interaction (e.g., a rating) is considered. In many application domains, however, multiple user-item interactions of different types can be recorded over time. And, a number of recent works have shown that this information can be used to build richer individual user models and to discover additional behavioral patterns that can be leveraged in the recommendation process. In this work we review existing works that consider information from such sequentially-ordered user- item interaction logs in the recommendation process. Based on this review, we propose a categorization of the corresponding recommendation tasks and goals, summarize existing algorithmic solutions, discuss methodological approaches when benchmarking what we call sequence-aware recommender systems, and outline open challenges in the area.
In recent years, deep neural networks have yielded state-of-the-art performance on several tasks. Although some recent works have focused on combining deep learning with recommendation, we highlight three issues of existing works. First, most works perform deep content feature learning and resort to matrix factorization, which cannot effectively model the highly complex user-item interaction function. Second, due to the difficulty on training deep neural networks, existing models utilize a shallow architecture, and thus limit the expressive potential of deep learning. Third, neural network models are easy to overfit on the implicit setting, because negative interactions are not taken into account. To tackle these issues, we present a generic recommender framework called Neural Collaborative Autoencoder (NCAE) to perform collaborative filtering, which works well for both explicit feedback and implicit feedback. NCAE can effectively capture the relationship between interactions via a non-linear matrix factorization process. To optimize the deep architecture of NCAE, we develop a three-stage pre-training mechanism that combines supervised and unsupervised feature learning. Moreover, to prevent overfitting on the implicit setting, we propose an error reweighting module and a sparsity-aware data-augmentation strategy. Extensive experiments on three real-world datasets demonstrate that NCAE can significantly advance the state-of-the-art.
A recommender system aims to recommend items that a user is interested in among many items. The need for the recommender system has been expanded by the information explosion. Various approaches have been suggested for providing meaningful recommendations to users. One of the proposed approaches is to consider a recommender system as a Markov decision process (MDP) problem and try to solve it using reinforcement learning (RL). However, existing RL-based methods have an obvious drawback. To solve an MDP in a recommender system, they encountered a problem with the large number of discrete actions that bring RL to a larger class of problems. In this paper, we propose a novel RL-based recommender system. We formulate a recommender system as a gridworld game by using a biclustering technique that can reduce the state and action space significantly. Using biclustering not only reduces space but also improves the recommendation quality effectively handling the cold-start problem. In addition, our approach can provide users with some explanation why the system recommends certain items. Lastly, we examine the proposed algorithm on a real-world dataset and achieve a better performance than the widely used recommendation algorithm.
With the ever-growing volume, complexity and dynamicity of online information, recommender system has been an effective key solution to overcome such information overload. In recent years, deep learning's revolutionary advances in speech recognition, image analysis and natural language processing have gained significant attention. Meanwhile, recent studies also demonstrate its effectiveness in coping with information retrieval and recommendation tasks. Applying deep learning techniques into recommender system has been gaining momentum due to its state-of-the-art performances and high-quality recommendations. In contrast to traditional recommendation models, deep learning provides a better understanding of user's demands, item's characteristics and historical interactions between them. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems towards fostering innovations of recommender system research. A taxonomy of deep learning based recommendation models is presented and used to categorize the surveyed articles. Open problems are identified based on the analytics of the reviewed works and potential solutions discussed.