亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Causal inference in a sub-population involves identifying the causal effect of an intervention on a specific subgroup, which is distinguished from the whole population through the influence of systematic biases in the sampling process. However, ignoring the subtleties introduced by sub-populations can either lead to erroneous inference or limit the applicability of existing methods. We introduce and advocate for a causal inference problem in sub-populations (henceforth called s-ID), in which we merely have access to observational data of the targeted sub-population (as opposed to the entire population). Existing inference problems in sub-populations operate on the premise that the given data distributions originate from the entire population, thus, cannot tackle the s-ID problem. To address this gap, we provide necessary and sufficient conditions that must hold in the causal graph for a causal effect in a sub-population to be identifiable from the observational distribution of that sub-population. Given these conditions, we present a sound and complete algorithm for the s-ID problem.

相關內容

Infineon has identified a need for engineers, account managers, and customers to rapidly obtain product information. This problem is traditionally addressed with retrieval-augmented generation (RAG) chatbots, but in this study, I evaluated the use of the newly popularized RAG-Fusion method. RAG-Fusion combines RAG and reciprocal rank fusion (RRF) by generating multiple queries, reranking them with reciprocal scores and fusing the documents and scores. Through manually evaluating answers on accuracy, relevance, and comprehensiveness, I found that RAG-Fusion was able to provide accurate and comprehensive answers due to the generated queries contextualizing the original query from various perspectives. However, some answers strayed off topic when the generated queries' relevance to the original query is insufficient. This research marks significant progress in artificial intelligence (AI) and natural language processing (NLP) applications and demonstrates transformations in a global and multi-industry context.

This work introduces ExaLogLog, a new data structure for approximate distinct counting, which has the same practical properties as the popular HyperLogLog algorithm. It is commutative, idempotent, mergeable, reducible, has a constant-time insert operation, and supports distinct counts up to the exa-scale. At the same time, as theoretically derived and experimentally verified, it requires 43% less space to achieve the same estimation error.

In recent years, object-oriented simultaneous localization and mapping (SLAM) has attracted increasing attention due to its ability to provide high-level semantic information while maintaining computational efficiency. Some researchers have attempted to enhance localization accuracy by integrating the modeled object residuals into bundle adjustment. However, few have demonstrated better results than feature-based visual SLAM systems, as the generic coarse object models, such as cuboids or ellipsoids, are less accurate than feature points. In this paper, we propose a Visual Object Odometry and Mapping framework VOOM using high-level objects and low-level points as the hierarchical landmarks in a coarse-to-fine manner instead of directly using object residuals in bundle adjustment. Firstly, we introduce an improved observation model and a novel data association method for dual quadrics, employed to represent physical objects. It facilitates the creation of a 3D map that closely reflects reality. Next, we use object information to enhance the data association of feature points and consequently update the map. In the visual object odometry backend, the updated map is employed to further optimize the camera pose and the objects. Meanwhile, local bundle adjustment is performed utilizing the objects and points-based covisibility graphs in our visual object mapping process. Experiments show that VOOM outperforms both object-oriented SLAM and feature points SLAM systems such as ORB-SLAM2 in terms of localization. The implementation of our method is available at //github.com/yutongwangBIT/VOOM.git.

Learning a human-like driving policy from large-scale driving demonstrations is promising, but the uncertainty and non-deterministic nature of planning make it challenging. In this work, to cope with the uncertainty problem, we propose VADv2, an end-to-end driving model based on probabilistic planning. VADv2 takes multi-view image sequences as input in a streaming manner, transforms sensor data into environmental token embeddings, outputs the probabilistic distribution of action, and samples one action to control the vehicle. Only with camera sensors, VADv2 achieves state-of-the-art closed-loop performance on the CARLA Town05 benchmark, significantly outperforming all existing methods. It runs stably in a fully end-to-end manner, even without the rule-based wrapper. Closed-loop demos are presented at //hgao-cv.github.io/VADv2.

Large language models (LLMs) have made significant strides in reasoning capabilities, with ongoing efforts to refine their reasoning through self-correction. However, recent studies suggest that self-correction can be limited or even counterproductive without external accurate knowledge, raising questions about the limits and effectiveness of self-correction. In this paper, we aim to enhance LLM's self-checking capabilities by meticulously designing training data, thereby improving the accuracy of self-correction. We conduct a detailed analysis of error types in mathematical reasoning and develop a tailored prompt, termed ``Step CoT Check''. Then we construct a checking-correction dataset for training models. After integrating the original CoT data and checking-correction data for training, we observe that models could improve their self-checking capabilities, thereby enhancing their self-correction capacity and eliminating the need for external feedback or ground truth labels to ascertain the endpoint of correction. We compare the performance of models fine-tuned with the ``Step CoT Check'' prompt against those refined using other promps within the context of checking-correction data. The ``Step CoT Check'' outperforms the other two check formats in model with lager parameters, providing more precise feedback thus achieving a higher rate of correctness. For reproducibility, all the datasets and codes are provided in \url{//github.com/bammt/Learn-to-check}.

We address the growing apprehension that GNNs, in the absence of fairness constraints, might produce biased decisions that disproportionately affect underprivileged groups or individuals. Departing from previous work, we introduce for the first time a method for incorporating the Gini coefficient as a measure of fairness to be used within the GNN framework. Our proposal, GRAPHGINI, works with the two different goals of individual and group fairness in a single system, while maintaining high prediction accuracy. GRAPHGINI enforces individual fairness through learnable attention scores that help in aggregating more information through similar nodes. A heuristic-based maximum Nash social welfare constraint ensures the maximum possible group fairness. Both the individual fairness constraint and the group fairness constraint are stated in terms of a differentiable approximation of the Gini coefficient. This approximation is a contribution that is likely to be of interest even beyond the scope of the problem studied in this paper. Unlike other state-of-the-art, GRAPHGINI automatically balances all three optimization objectives (utility, individual, and group fairness) of the GNN and is free from any manual tuning of weight parameters. Extensive experimentation on real-world datasets showcases the efficacy of GRAPHGINI in making significant improvements in individual fairness compared to all currently available state-of-the-art methods while maintaining utility and group equality.

Bias benchmarks are a popular method for studying the negative impacts of bias in LLMs, yet there has been little empirical investigation of whether these benchmarks are actually indicative of how real world harm may manifest in the real world. In this work, we study the correspondence between such decontextualized "trick tests" and evaluations that are more grounded in Realistic Use and Tangible {Effects (i.e. RUTEd evaluations). We explore this correlation in the context of gender-occupation bias--a popular genre of bias evaluation. We compare three de-contextualized evaluations adapted from the current literature to three analogous RUTEd evaluations applied to long-form content generation. We conduct each evaluation for seven instruction-tuned LLMs. For the RUTEd evaluations, we conduct repeated trials of three text generation tasks: children's bedtime stories, user personas, and English language learning exercises. We found no correspondence between trick tests and RUTEd evaluations. Specifically, selecting the least biased model based on the de-contextualized results coincides with selecting the model with the best performance on RUTEd evaluations only as often as random chance. We conclude that evaluations that are not based in realistic use are likely insufficient to mitigate and assess bias and real-world harms.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.

Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.

北京阿比特科技有限公司