亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We explain how to use Kolmogorov Superposition Theorem (KST) to break the curse of dimensionality when approximating a dense class of multivariate continuous functions. We first show that there is a class of functions called $K$-Lipschitz continuous in $C([0,1]^d)$ which can be approximated by a special ReLU neural network of two hidden layers with a dimension independent approximation rate $O(n^{-1})$ with approximation constant increasing quadratically in $d$. The number of parameters used in such neural network approximation equals to $(6d+2)n$. Next we introduce KB-splines by using linear B-splines to replace the K-outer function and smooth the KB-splines to have the so-called LKB-splines as the basis for approximation. Our numerical evidence shows that the curse of dimensionality is broken in the following sense: When using the standard discrete least squares (DLS) method to approximate a continuous function, there exists a pivotal set of points in $[0,1]^d$ with size at most $O(nd)$ such that the rooted mean squares error (RMSE) from the DLS based on the pivotal set is similar to the RMSE of the DLS based on the original set with size $O(n^d)$. In addition, by using matrix cross approximation technique, the number of LKB-splines used for approximation is the same as the size of the pivotal data set. Therefore, we do not need too many basis functions as well as too many function values to approximate a high dimensional continuous function $f$.

相關內容

Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication. However, a primary limitation lies in the significant computational demands during training, arising from their extensive parameterization. This challenge is further intensified by the dynamic nature of the world, necessitating frequent updates to LLMs to correct outdated information or integrate new knowledge, thereby ensuring their continued relevance. Note that many applications demand continual model adjustments post-training to address deficiencies or undesirable behaviors. There is an increasing interest in efficient, lightweight methods for on-the-fly model modifications. To this end, recent years have seen a burgeoning in the techniques of knowledge editing for LLMs, which aim to efficiently modify LLMs' behaviors within specific domains while preserving overall performance across various inputs. In this paper, we first define the knowledge editing problem and then provide a comprehensive review of cutting-edge approaches. Drawing inspiration from educational and cognitive research theories, we propose a unified categorization criterion that classifies knowledge editing methods into three groups: resorting to external knowledge, merging knowledge into the model, and editing intrinsic knowledge. Furthermore, we introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches. Additionally, we provide an in-depth analysis of knowledge location, which can provide a deeper understanding of the knowledge structures inherent within LLMs. Finally, we discuss several potential applications of knowledge editing, outlining its broad and impactful implications.

We examine the problem of determining demonstration sufficiency: how can a robot self-assess whether it has received enough demonstrations from an expert to ensure a desired level of performance? To address this problem, we propose a novel self-assessment approach based on Bayesian inverse reinforcement learning and value-at-risk, enabling learning-from-demonstration ("LfD") robots to compute high-confidence bounds on their performance and use these bounds to determine when they have a sufficient number of demonstrations. We propose and evaluate two definitions of sufficiency: (1) normalized expected value difference, which measures regret with respect to the human's unobserved reward function, and (2) percent improvement over a baseline policy. We demonstrate how to formulate high-confidence bounds on both of these metrics. We evaluate our approach in simulation for both discrete and continuous state-space domains and illustrate the feasibility of developing a robotic system that can accurately evaluate demonstration sufficiency. We also show that the robot can utilize active learning in asking for demonstrations from specific states which results in fewer demos needed for the robot to still maintain high confidence in its policy. Finally, via a user study, we show that our approach successfully enables robots to perform at users' desired performance levels, without needing too many or perfectly optimal demonstrations.

We present an elementary yet general proof of duality for Wasserstein distributionally robust optimization. The duality holds for any arbitrary Kantorovich transport cost, measurable loss function, and nominal probability distribution, provided that an interchangeability principle holds, which is equivalent to certain measurability conditions. To illustrate the broader applicability of our approach, we provide a rigorous treatment of duality results in distributionally robust Markov decision processes and distributionally robust multistage stochastic programming. Furthermore, we extend the result to other problems including infinity-Wasserstein distributionally robust optimization, risk-averse optimization, and globalized distributionally robust counterpart.

Solving partially observable Markov decision processes (POMDPs) with high dimensional and continuous observations, such as camera images, is required for many real life robotics and planning problems. Recent researches suggested machine learned probabilistic models as observation models, but their use is currently too computationally expensive for online deployment. We deal with the question of what would be the implication of using simplified observation models for planning, while retaining formal guarantees on the quality of the solution. Our main contribution is a novel probabilistic bound based on a statistical total variation distance of the simplified model. We show that it bounds the theoretical POMDP value w.r.t. original model, from the empirical planned value with the simplified model, by generalizing recent results of particle-belief MDP concentration bounds. Our calculations can be separated into offline and online parts, and we arrive at formal guarantees without having to access the costly model at all during planning, which is also a novel result. Finally, we demonstrate in simulation how to integrate the bound into the routine of an existing continuous online POMDP solver.

Video grounding aims to localize the target moment in an untrimmed video corresponding to a given sentence query. Existing methods typically select the best prediction from a set of predefined proposals or directly regress the target span in a single-shot manner, resulting in the absence of a systematical prediction refinement process. In this paper, we propose DiffusionVG, a novel framework with diffusion models that formulates video grounding as a conditional generation task, where the target span is generated from Gaussian noise inputs and interatively refined in the reverse diffusion process. During training, DiffusionVG progressively adds noise to the target span with a fixed forward diffusion process and learns to recover the target span in the reverse diffusion process. In inference, DiffusionVG can generate the target span from Gaussian noise inputs by the learned reverse diffusion process conditioned on the video-sentence representations. Without bells and whistles, our DiffusionVG demonstrates superior performance compared to existing well-crafted models on mainstream Charades-STA, ActivityNet Captions and TACoS benchmarks.

Constructing a universal moral code for artificial intelligence (AI) is difficult or even impossible, given that different human cultures have different definitions of morality and different societal norms. We therefore argue that the value system of an AI should be culturally attuned: just as a child raised in a particular culture learns the specific values and norms of that culture, we propose that an AI agent operating in a particular human community should acquire that community's moral, ethical, and cultural codes. How AI systems might acquire such codes from human observation and interaction has remained an open question. Here, we propose using inverse reinforcement learning (IRL) as a method for AI agents to acquire a culturally-attuned value system implicitly. We test our approach using an experimental paradigm in which AI agents use IRL to learn different reward functions, which govern the agents' moral values, by observing the behavior of different cultural groups in an online virtual world requiring real-time decision making. We show that an AI agent learning from the average behavior of a particular cultural group can acquire altruistic characteristics reflective of that group's behavior, and this learned value system can generalize to new scenarios requiring altruistic judgments. Our results provide, to our knowledge, the first demonstration that AI agents could potentially be endowed with the ability to continually learn their values and norms from observing and interacting with humans, thereby becoming attuned to the culture they are operating in.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司