亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Constructing a universal moral code for artificial intelligence (AI) is difficult or even impossible, given that different human cultures have different definitions of morality and different societal norms. We therefore argue that the value system of an AI should be culturally attuned: just as a child raised in a particular culture learns the specific values and norms of that culture, we propose that an AI agent operating in a particular human community should acquire that community's moral, ethical, and cultural codes. How AI systems might acquire such codes from human observation and interaction has remained an open question. Here, we propose using inverse reinforcement learning (IRL) as a method for AI agents to acquire a culturally-attuned value system implicitly. We test our approach using an experimental paradigm in which AI agents use IRL to learn different reward functions, which govern the agents' moral values, by observing the behavior of different cultural groups in an online virtual world requiring real-time decision making. We show that an AI agent learning from the average behavior of a particular cultural group can acquire altruistic characteristics reflective of that group's behavior, and this learned value system can generalize to new scenarios requiring altruistic judgments. Our results provide, to our knowledge, the first demonstration that AI agents could potentially be endowed with the ability to continually learn their values and norms from observing and interacting with humans, thereby becoming attuned to the culture they are operating in.

相關內容

A vital aspect of Indian Classical Music (ICM) is Raga, which serves as a melodic framework for compositions and improvisations alike. Raga Recognition is an important music information retrieval task in ICM as it can aid numerous downstream applications ranging from music recommendations to organizing huge music collections. In this work, we propose a deep learning based approach to Raga recognition. Our approach employs efficient pre possessing and learns temporal sequences in music data using Long Short Term Memory based Recurrent Neural Networks (LSTM-RNN). We train and test the network on smaller sequences sampled from the original audio while the final inference is performed on the audio as a whole. Our method achieves an accuracy of 88.1% and 97 % during inference on the Comp Music Carnatic dataset and its 10 Raga subset respectively making it the state-of-the-art for the Raga recognition task. Our approach also enables sequence ranking which aids us in retrieving melodic patterns from a given music data base that are closely related to the presented query sequence.

Estimating mutual correlations between random variables or data streams is essential for intelligent behavior and decision-making. As a fundamental quantity for measuring statistical relationships, mutual information has been extensively studied and utilized for its generality and equitability. However, existing methods often lack the efficiency needed for real-time applications, such as test-time optimization of a neural network, or the differentiability required for end-to-end learning, like histograms. We introduce a neural network called InfoNet, which directly outputs mutual information estimations of data streams by leveraging the attention mechanism and the computational efficiency of deep learning infrastructures. By maximizing a dual formulation of mutual information through large-scale simulated training, our approach circumvents time-consuming test-time optimization and offers generalization ability. We evaluate the effectiveness and generalization of our proposed mutual information estimation scheme on various families of distributions and applications. Our results demonstrate that InfoNet and its training process provide a graceful efficiency-accuracy trade-off and order-preserving properties. We will make the code and models available as a comprehensive toolbox to facilitate studies in different fields requiring real-time mutual information estimation.

The human-like automatic deductive reasoning has always been one of the most challenging open problems in the interdiscipline of mathematics and artificial intelligence. This paper is the third in a series of our works. We built a neural-symbolic system, called FGeoDRL, to automatically perform human-like geometric deductive reasoning. The neural part is an AI agent based on reinforcement learning, capable of autonomously learning problem-solving methods from the feedback of a formalized environment, without the need for human supervision. It leverages a pre-trained natural language model to establish a policy network for theorem selection and employ Monte Carlo Tree Search for heuristic exploration. The symbolic part is a reinforcement learning environment based on geometry formalization theory and FormalGeo, which models GPS as a Markov Decision Process. In this formal symbolic system, the known conditions and objectives of the problem form the state space, while the set of theorems forms the action space. Leveraging FGeoDRL, we have achieved readable and verifiable automated solutions to geometric problems. Experiments conducted on the formalgeo7k dataset have achieved a problem-solving success rate of 86.40%. The project is available at //github.com/PersonNoName/FGeoDRL.

There is increasing interest in using LLMs as decision-making "agents." Doing so includes many degrees of freedom: which model should be used; how should it be prompted; should it be asked to introspect, conduct chain-of-thought reasoning, etc? Settling these questions -- and more broadly, determining whether an LLM agent is reliable enough to be trusted -- requires a methodology for assessing such an agent's economic rationality. In this paper, we provide one. We begin by surveying the economic literature on rational decision making, taxonomizing a large set of fine-grained "elements" that an agent should exhibit, along with dependencies between them. We then propose a benchmark distribution that quantitatively scores an LLMs performance on these elements and, combined with a user-provided rubric, produces a "rationality report card." Finally, we describe the results of a large-scale empirical experiment with 14 different LLMs, characterizing the both current state of the art and the impact of different model sizes on models' ability to exhibit rational behavior.

Due to various sources of uncertainty, emergent behavior, and ongoing changes, the reliability of many socio-technical systems depends on an iterative and collaborative process in which organizations (1) analyze and learn from system failures, and then (2) co-evolve both the technical and human parts of their systems based on what they learn. Many organizations have defined processes for learning from failure, often involving postmortem analyses conducted after any system failures that are judged to be sufficiently severe. Despite established processes and tool support, our preliminary research, and professional experience, suggest that it is not straightforward to take what was learned from a failure and successfully improve the reliability of the socio-technical system. To better understand this collaborative process and the associated challenges, we are conducting a study of how teams learn from failure. We are gathering incident reports from multiple organizations and conducting interviews with engineers and managers with relevant experience. Our analytic interest is in what is learned by teams as they reflect on failures, the learning processes involved, and how they use what is learned. Our data collection and analysis are not yet complete, but we have so far analyzed 13 incident reports and seven interviews. In this short paper we (1) present our preliminary findings, and (2) outline our broader research plans.

Fervent calls for more robust governance of the harms associated with artificial intelligence (AI) are leading to the adoption around the world of what regulatory scholars have called a management-based approach to regulation. Recent initiatives in the United States and Europe, as well as the adoption of major self-regulatory standards by the International Organization for Standardization, share in common a core management-based paradigm. These management-based initiatives seek to motivate an increase in human oversight of how AI tools are trained and developed. Refinements and systematization of human-guided training techniques will thus be needed to fit within this emerging era of management-based regulatory paradigm. If taken seriously, human-guided training can alleviate some of the technical and ethical pressures on AI, boosting AI performance with human intuition as well as better addressing the needs for fairness and effective explainability. In this paper, we discuss the connection between the emerging management-based regulatory frameworks governing AI and the need for human oversight during training. We broadly cover some of the technical components involved in human-guided training and then argue that the kinds of high-stakes use cases for AI that appear of most concern to regulators should lean more on human-guided training than on data-only training. We hope to foster a discussion between legal scholars and computer scientists involving how to govern a domain of technology that is vast, heterogenous, and dynamic in its applications and risks.

Return-oriented programming (ROP) is a code reuse attack that chains short snippets of existing code to perform arbitrary operations on target machines. Existing detection methods against ROP exhibit unsatisfactory detection accuracy and/or have high runtime overhead. In this paper, we present ROPNN, which innovatively combines address space layout guided disassembly and deep neural networks to detect ROP payloads. The disassembler treats application input data as code pointers and aims to find any potential gadget chains, which are then classified by a deep neural network as benign or malicious. Our experiments show that ROPNN has high detection rate (99.3%) and a very low false positive rate (0.01%). ROPNN successfully detects all of the 100 real-world ROP exploits that are collected in-the-wild, created manually or created by ROP exploit generation tools. Additionally, ROPNN detects all 10 ROP exploits that can bypass Bin-CFI. ROPNN is non-intrusive and does not incur any runtime overhead to the protected program.

The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

北京阿比特科技有限公司