亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning rich skills under the option framework without supervision of external rewards is at the frontier of reinforcement learning research. Existing works mainly fall into two distinctive categories: variational option discovery that maximizes the diversity of the options through a mutual information loss (while ignoring coverage) and Laplacian-based methods that focus on improving the coverage of options by increasing connectivity of the state space (while ignoring diversity). In this paper, we show that diversity and coverage in unsupervised option discovery can indeed be unified under the same mathematical framework. To be specific, we explicitly quantify the diversity and coverage of the learned options through a novel use of Determinantal Point Process (DPP) and optimize these objectives to discover options with both superior diversity and coverage. Our proposed algorithm, ODPP, has undergone extensive evaluation on challenging tasks created with Mujoco and Atari. The results demonstrate that our algorithm outperforms state-of-the-art baselines in both diversity- and coverage-driven categories.

相關內容

In the realm of e-commerce search, the significance of semantic matching cannot be overstated, as it directly impacts both user experience and company revenue. Along this line, query rewriting, serving as an important technique to bridge the semantic gaps inherent in the semantic matching process, has attached wide attention from the industry and academia. However, existing query rewriting methods often struggle to effectively optimize long-tail queries and alleviate the phenomenon of "few-recall" caused by semantic gap. In this paper, we present BEQUE, a comprehensive framework that Bridges the sEmantic gap for long-tail QUEries. In detail, BEQUE comprises three stages: multi-instruction supervised fine tuning (SFT), offline feedback, and objective alignment. We first construct a rewriting dataset based on rejection sampling and auxiliary tasks mixing to fine-tune our large language model (LLM) in a supervised fashion. Subsequently, with the well-trained LLM, we employ beam search to generate multiple candidate rewrites, and feed them into Taobao offline system to obtain the partial order. Leveraging the partial order of rewrites, we introduce a contrastive learning method to highlight the distinctions between rewrites, and align the model with the Taobao online objectives. Offline experiments prove the effectiveness of our method in bridging semantic gap. Online A/B tests reveal that our method can significantly boost gross merchandise volume (GMV), number of transaction (#Trans) and unique visitor (UV) for long-tail queries. BEQUE has been deployed on Taobao, one of most popular online shopping platforms in China, since October 2023.

Positional encodings are employed to capture the high frequency information of the encoded signals in implicit neural representation (INR). In this paper, we propose a novel positional encoding method which improves the reconstruction quality of the INR. The proposed embedding method is more advantageous for the compact data representation because it has a greater number of frequency basis than the existing methods. Our experiments shows that the proposed method achieves significant gain in the rate-distortion performance without introducing any additional complexity in the compression task and higher reconstruction quality in novel view synthesis.

Self-supervised learning (SSL) for WiFi-based human activity recognition (HAR) holds great promise due to its ability to address the challenge of insufficient labeled data. However, directly transplanting SSL algorithms, especially contrastive learning, originally designed for other domains to CSI data, often fails to achieve the expected performance. We attribute this issue to the inappropriate alignment criteria, which disrupt the semantic distance consistency between the feature space and the input space. To address this challenge, we introduce \textbf{A}ntenna \textbf{R}esponse \textbf{C}onsistency (ARC) as a solution to define proper alignment criteria. ARC is designed to retain semantic information from the input space while introducing robustness to real-world noise. Moreover, we substantiate the effectiveness of ARC through a comprehensive set of experiments, demonstrating its capability to enhance the performance of self-supervised learning for WiFi-based HAR by achieving an increase of over 5\% in accuracy in most cases and achieving a best accuracy of 94.97\%.

Advanced omics technologies and facilities generate a wealth of valuable data daily; however, the data often lacks the essential metadata required for researchers to find and search them effectively. The lack of metadata poses a significant challenge in the utilization of these datasets. Machine learning-based metadata extraction techniques have emerged as a potentially viable approach to automatically annotating scientific datasets with the metadata necessary for enabling effective search. Text labeling, usually performed manually, plays a crucial role in validating machine-extracted metadata. However, manual labeling is time-consuming; thus, there is an need to develop automated text labeling techniques in order to accelerate the process of scientific innovation. This need is particularly urgent in fields such as environmental genomics and microbiome science, which have historically received less attention in terms of metadata curation and creation of gold-standard text mining datasets. In this paper, we present two novel automated text labeling approaches for the validation of ML-generated metadata for unlabeled texts, with specific applications in environmental genomics. Our techniques show the potential of two new ways to leverage existing information about the unlabeled texts and the scientific domain. The first technique exploits relationships between different types of data sources related to the same research study, such as publications and proposals. The second technique takes advantage of domain-specific controlled vocabularies or ontologies. In this paper, we detail applying these approaches for ML-generated metadata validation. Our results show that the proposed label assignment approaches can generate both generic and highly-specific text labels for the unlabeled texts, with up to 44% of the labels matching with those suggested by a ML keyword extraction algorithm.

Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there were finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, many real-world data are not naturally posed in the setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions, and then convert the GPs into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is further developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications.

This paper establishes the nearly optimal rate of approximation for deep neural networks (DNNs) when applied to Korobov functions, effectively overcoming the curse of dimensionality. The approximation results presented in this paper are measured with respect to $L_p$ norms and $H^1$ norms. Our achieved approximation rate demonstrates a remarkable "super-convergence" rate, outperforming traditional methods and any continuous function approximator. These results are non-asymptotic, providing error bounds that consider both the width and depth of the networks simultaneously.

A generative AI model can generate extremely realistic-looking content, posing growing challenges to the authenticity of information. To address the challenges, watermark has been leveraged to detect AI-generated content. Specifically, a watermark is embedded into an AI-generated content before it is released. A content is detected as AI-generated if a similar watermark can be decoded from it. In this work, we perform a systematic study on the robustness of such watermark-based AI-generated content detection. We focus on AI-generated images. Our work shows that an attacker can post-process a watermarked image via adding a small, human-imperceptible perturbation to it, such that the post-processed image evades detection while maintaining its visual quality. We show the effectiveness of our attack both theoretically and empirically. Moreover, to evade detection, our adversarial post-processing method adds much smaller perturbations to AI-generated images and thus better maintain their visual quality than existing popular post-processing methods such as JPEG compression, Gaussian blur, and Brightness/Contrast. Our work shows the insufficiency of existing watermark-based detection of AI-generated content, highlighting the urgent needs of new methods. Our code is publicly available: //github.com/zhengyuan-jiang/WEvade.

In settings such as e-recruitment and online dating, recommendation involves distributing limited opportunities, calling for novel approaches to quantify and enforce fairness. We introduce \emph{inferiority}, a novel (un)fairness measure quantifying a user's competitive disadvantage for their recommended items. Inferiority complements \emph{envy}, a fairness notion measuring preference for others' recommendations. We combine inferiority and envy with \emph{utility}, an accuracy-related measure of aggregated relevancy scores. Since these measures are non-differentiable, we reformulate them using a probabilistic interpretation of recommender systems, yielding differentiable versions. We combine these loss functions in a multi-objective optimization problem called \texttt{FEIR} (Fairness through Envy and Inferiority Reduction), applied as post-processing for standard recommender systems. Experiments on synthetic and real-world data demonstrate that our approach improves trade-offs between inferiority, envy, and utility compared to naive recommendations and the baseline methods.

Existing score-distilling text-to-3D generation techniques, despite their considerable promise, often encounter the view inconsistency problem. One of the most notable issues is the Janus problem, where the most canonical view of an object (\textit{e.g}., face or head) appears in other views. In this work, we explore existing frameworks for score-distilling text-to-3D generation and identify the main causes of the view inconsistency problem -- the embedded bias of 2D diffusion models. Based on these findings, we propose two approaches to debias the score-distillation frameworks for view-consistent text-to-3D generation. Our first approach, called score debiasing, involves cutting off the score estimated by 2D diffusion models and gradually increasing the truncation value throughout the optimization process. Our second approach, called prompt debiasing, identifies conflicting words between user prompts and view prompts using a language model, and adjusts the discrepancy between view prompts and the viewing direction of an object. Our experimental results show that our methods improve the realism of the generated 3D objects by significantly reducing artifacts and achieve a good trade-off between faithfulness to the 2D diffusion models and 3D consistency with little overhead. Our project page is available at~\url{//susunghong.github.io/Debiased-Score-Distillation-Sampling/}.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

北京阿比特科技有限公司