Motivated by environmental policy questions, we address the challenges of estimation, change point detection, and uncertainty quantification of a causal exposure-response function (CERF). Under a potential outcome framework, the CERF describes the relationship between a continuously varying exposure (or treatment) and its causal effect on an outcome. We propose a new Bayesian approach that relies on a Gaussian process (GP) model to estimate the CERF nonparametrically. To achieve the desired separation of design and analysis phases, we parametrize the covariance (kernel) function of the GP to mimic matching via a Generalized Propensity Score (GPS). The hyper-parameters as well as the form of the kernel function of the GP are chosen to optimize covariate balance. Our approach achieves automatic uncertainty evaluation of the CERF with high computational efficiency, and enables change point detection through inference on derivatives of the CERF. We provide theoretical results showing the correspondence between our Bayesian GP framework and traditional approaches in causal inference for estimating causal effects of a continuous exposure. We apply the methods to 520,711 ZIP-code-level observations to estimate the causal effect of long-term exposures to PM2.5, ozone, and NO2 on all-cause mortality among Medicare enrollees in the US. A computationally efficient implementation of the proposed GP models is provided in the GPCERF R package, which is available on CRAN.
The flock-guidance problem enjoys a challenging structure where multiple optimization objectives are solved simultaneously. This usually necessitates different control approaches to tackle various objectives, such as guidance, collision avoidance, and cohesion. The guidance schemes, in particular, have long suffered from complex tracking-error dynamics. Furthermore, techniques that are based on linear feedback strategies obtained at equilibrium conditions either may not hold or degrade when applied to uncertain dynamic environments. Pre-tuned fuzzy inference architectures lack robustness under such unmodeled conditions. This work introduces an adaptive distributed technique for the autonomous control of flock systems. Its relatively flexible structure is based on online fuzzy reinforcement learning schemes which simultaneously target a number of objectives; namely, following a leader, avoiding collision, and reaching a flock velocity consensus. In addition to its resilience in the face of dynamic disturbances, the algorithm does not require more than the agent position as a feedback signal. The effectiveness of the proposed method is validated with two simulation scenarios and benchmarked against a similar technique from the literature.
Selection of covariates is crucial in the estimation of average treatment effects given observational data with high or even ultra-high dimensional pretreatment variables. Existing methods for this problem typically assume sparse linear models for both outcome and univariate treatment, and cannot handle situations with ultra-high dimensional covariates. In this paper, we propose a new covariate selection strategy called double screening prior adaptive lasso (DSPAL) to select confounders and predictors of the outcome for multivariate treatments, which combines the adaptive lasso method with the marginal conditional (in)dependence prior information to select target covariates, in order to eliminate confounding bias and improve statistical efficiency. The distinctive features of our proposal are that it can be applied to high-dimensional or even ultra-high dimensional covariates for multivariate treatments, and can deal with the cases of both parametric and nonparametric outcome models, which makes it more robust compared to other methods. Our theoretical analyses show that the proposed procedure enjoys the sure screening property, the ranking consistency property and the variable selection consistency. Through a simulation study, we demonstrate that the proposed approach selects all confounders and predictors consistently and estimates the multivariate treatment effects with smaller bias and mean squared error compared to several alternatives under various scenarios. In real data analysis, the method is applied to estimate the causal effect of a three-dimensional continuous environmental treatment on cholesterol level and enlightening results are obtained.
Although understanding and characterizing causal effects have become essential in observational studies, it is challenging when the confounders are high-dimensional. In this article, we develop a general framework $\textit{CausalEGM}$ for estimating causal effects by encoding generative modeling, which can be applied in both binary and continuous treatment settings. Under the potential outcome framework with unconfoundedness, we establish a bidirectional transformation between the high-dimensional confounders space and a low-dimensional latent space where the density is known (e.g., multivariate normal distribution). Through this, CausalEGM simultaneously decouples the dependencies of confounders on both treatment and outcome and maps the confounders to the low-dimensional latent space. By conditioning on the low-dimensional latent features, CausalEGM can estimate the causal effect for each individual or the average causal effect within a population. Our theoretical analysis shows that the excess risk for CausalEGM can be bounded through empirical process theory. Under an assumption on encoder-decoder networks, the consistency of the estimate can be guaranteed. In a series of experiments, CausalEGM demonstrates superior performance over existing methods for both binary and continuous treatments. Specifically, we find CausalEGM to be substantially more powerful than competing methods in the presence of large sample sizes and high dimensional confounders. The software of CausalEGM is freely available at //github.com/SUwonglab/CausalEGM.
We discuss Bayesian inference for a known-mean Gaussian model with a compound symmetric variance-covariance matrix. Since the space of such matrices is a linear subspace of that of positive definite matrices, we utilize the methods of Pisano (2022) to decompose the usual Wishart conjugate prior and derive a closed-form, three-parameter, bivariate conjugate prior distribution for the compound-symmetric half-precision matrix. The off-diagonal entry is found to have a non-central Kummer-Beta distribution conditioned on the diagonal, which is shown to have a gamma distribution generalized with Gauss's hypergeometric function. Such considerations yield a treatment of maximum a posteriori estimation for such matrices in Gaussian settings, including the Bayesian evidence and flexibility penalty attributable to Rougier and Priebe (2019). We also demonstrate how the prior may be utilized to naturally test for the positivity of a common within-class correlation in a random-intercept model using two data-driven examples.
Surface matching usually provides significant deformations that can lead to structural failure due to the lack of physical policy. In this context, partial surface matching of non-linear deformable bodies is crucial in engineering to govern structure deformations. In this article, we propose to formulate the registration problem as an optimal control problem using an artificial neural network where the unknown is the surface force distribution that applies to the object and the resulting deformation computed using a hyper-elastic model. The optimization problem is solved using an adjoint method where the hyper-elastic problem is solved using the feed-forward neural network and the adjoint problem is obtained through the backpropagation of the network. Our process improves the computation speed by multiple orders of magnitude while providing acceptable registration errors.
Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: 1) Conventional GP inference scales $O(N^{3})$ with respect to the number of observations; 2) Updating a GP model sequentially is not trivial; and 3) Covariance kernels typically enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data. To demonstrate the utility of our proposed online Gaussian process mixture-of-experts approach in applied settings, we show that we can sucessfully implement an optimization algorithm using online Gaussian process bandits.
Mendelian randomization (MR) is a widely-used method to estimate the causal relationship between a risk factor and disease. A fundamental part of any MR analysis is to choose appropriate genetic variants as instrumental variables. Genome-wide association studies often reveal that hundreds of genetic variants may be robustly associated with a risk factor, but in some situations investigators may believe that only a smaller subset of these variants are valid instruments. Nevertheless, using the full set of instruments could lead to biased but more precise estimates, and therefore in terms of mean squared error it may be unclear which set of instruments is optimal. For this purpose, we consider a method for "focused" instrument selection whereby genetic variants are selected to minimise the estimated asymptotic mean squared error of causal effect estimates. In a setting of many weak and locally invalid instruments, we consider a novel strategy to construct confidence intervals for post-selection focused estimators which guards against the worst case loss in asymptotic coverage. In empirical applications to: (i) validate lipid drug targets; and (ii) investigate vitamin D effects on a wide range of outcomes, our findings suggest that the optimal selection of instruments does not involve only a small number of biologically-justified valid instruments, but also many potentially invalid instruments.
Opinion summarization is the task of creating summaries capturing popular opinions from user reviews. In this paper, we introduce Geodesic Summarizer (GeoSumm), a novel system to perform unsupervised extractive opinion summarization. GeoSumm involves an encoder-decoder based representation learning model, that generates representations of text as a distribution over latent semantic units. GeoSumm generates these representations by performing dictionary learning over pre-trained text representations at multiple decoder layers. We then use these representations to quantify the relevance of review sentences using a novel approximate geodesic distance based scoring mechanism. We use the relevance scores to identify popular opinions in order to compose general and aspect-specific summaries. Our proposed model, GeoSumm, achieves state-of-the-art performance on three opinion summarization datasets. We perform additional experiments to analyze the functioning of our model and showcase the generalization ability of {\X} across different domains.
The Internet of Things (IoT) system generates massive high-speed temporally correlated streaming data and is often connected with online inference tasks under computational or energy constraints. Online analysis of these streaming time series data often faces a trade-off between statistical efficiency and computational cost. One important approach to balance this trade-off is sampling, where only a small portion of the sample is selected for the model fitting and update. Motivated by the demands of dynamic relationship analysis of IoT system, we study the data-dependent sample selection and online inference problem for a multi-dimensional streaming time series, aiming to provide low-cost real-time analysis of high-speed power grid electricity consumption data. Inspired by D-optimality criterion in design of experiments, we propose a class of online data reduction methods that achieve an optimal sampling criterion and improve the computational efficiency of the online analysis. We show that the optimal solution amounts to a strategy that is a mixture of Bernoulli sampling and leverage score sampling. The leverage score sampling involves auxiliary estimations that have a computational advantage over recursive least squares updates. Theoretical properties of the auxiliary estimations involved are also discussed. When applied to European power grid consumption data, the proposed leverage score based sampling methods outperform the benchmark sampling method in online estimation and prediction. The general applicability of the sampling-assisted online estimation method is assessed via simulation studies.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.