Emotion recognition in conversations (ERC) is a rapidly evolving task within the natural language processing community, which aims to detect the emotions expressed by speakers during a conversation. Recently, a growing number of ERC methods have focused on leveraging supervised contrastive learning (SCL) to enhance the robustness and generalizability of learned features. However, current SCL-based approaches in ERC are impeded by the constraint of large batch sizes and the lack of compatibility with most existing ERC models. To address these challenges, we propose an efficient and model-agnostic SCL framework named Supervised Sample-Label Contrastive Learning with Soft-HGR Maximal Correlation (SSLCL), which eliminates the need for a large batch size and can be seamlessly integrated with existing ERC models without introducing any model-specific assumptions. Specifically, we introduce a novel perspective on utilizing label representations by projecting discrete labels into dense embeddings through a shallow multilayer perceptron, and formulate the training objective to maximize the similarity between sample features and their corresponding ground-truth label embeddings, while minimizing the similarity between sample features and label embeddings of disparate classes. Moreover, we innovatively adopt the Soft-HGR maximal correlation as a measure of similarity between sample features and label embeddings, leading to significant performance improvements over conventional similarity measures. Additionally, multimodal cues of utterances are effectively leveraged by SSLCL as data augmentations to boost model performances. Extensive experiments on two ERC benchmark datasets, IEMOCAP and MELD, demonstrate the compatibility and superiority of our proposed SSLCL framework compared to existing state-of-the-art SCL methods. Our code is available at \url{//github.com/TaoShi1998/SSLCL}.
Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate how such grounded models can be obtained across three simulation and real-world domains, and that the proposed decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.
Robotic Process Automation (RPA) has gained widespread adoption in corporate organizations, streamlining work processes while also introducing additional maintenance tasks. Effective governance of RPA can be achieved through the reusability of RPA components. However, refactoring RPA processes poses challenges when dealing with larger development teams, outsourcing, and staff turnover. This research aims to explore the possibility of identifying similarities in RPA processes for refactoring. To address this issue, we have developed Similarity Discovering Techniques for RPA (SiDiTeR). SiDiTeR utilizes source code or process logs from RPAautomations to search for similar or identical parts within RPA processes. The techniques introduced are specifically tailored to the RPA domain. We have expanded the potential matches by introducing a dictionary feature which helps identify different activities that produce the same output, and this has led to improved results in the RPA domain. Through our analysis, we have discovered 655 matches across 156 processes, with the longest match spanning 163 occurrences in 15 processes. Process similarity within the RPA domain proves to be a viable solution for mitigating the maintenance burden associated with RPA. This underscores the significance of process similarity in the RPA domain.
Click-through rate (CTR) prediction is a vital task in industry advertising systems. Most existing methods focus on the structure design of neural network for better accuracy and suffer from the data sparsity problem. Especially in industry advertising systems, the widely applied negative sample downsampling technique due to resource limitation worsens the problem, resulting in a decline in performance. In this paper, we propose \textbf{A}uxiliary Match \textbf{T}asks for enhancing \textbf{C}lick-\textbf{T}hrough \textbf{R}ate performance (AT4CTR) to alleviate the data sparsity problem. Specifically, we design two match tasks inspired by collaborative filtering to enhance the relevance between user and item. As the "click" action is a strong signal which indicates user's preference towards item directly, we make the first match task aim at pulling closer the representation between user and item regarding the positive samples. Since the user's past click behaviors can also be treated as the user him/herself, we apply the next item prediction as the second match task. For both the match tasks, we choose the InfoNCE in contrastive learning as their loss function. The two match tasks can provide meaningful training signals to speed up the model's convergence and alleviate the data sparsity. We conduct extensive experiments on a public dataset and a large-scale industry advertising dataset. The results demonstrate the effectiveness of the proposed auxiliary match tasks. AT4CTR has been deployed in the real industry advertising system and gains remarkable revenue.
Protecting the copyright of large language models (LLMs) has become crucial due to their resource-intensive training and accompanying carefully designed licenses. However, identifying the original base model of an LLM is challenging due to potential parameter alterations through fine-tuning or continued pretraining. In this study, we introduce HuRef, a human-readable fingerprint for LLMs that uniquely identifies the base model without exposing model parameters or interfering with training. We first observe that the vector direction of LLM parameters remains stable after the model has converged during pretraining, showing negligible perturbations through subsequent training steps, including continued pretraining, supervised fine-tuning (SFT), and RLHF, which makes it a sufficient condition to identify the base model. The necessity is validated by continuing to train an LLM with an extra term to drive away the model parameters' direction and the model becomes damaged. However, this direction is vulnerable to simple attacks like dimension permutation or matrix rotation, which significantly change it without affecting performance. To address this, leveraging the Transformer structure, we systematically analyze potential attacks and define three invariant terms that identify an LLM's base model. We make these invariant terms human-readable by mapping them to a Gaussian vector using a convolutional encoder and then converting it into a natural image with StyleGAN2. Our method generates a dog image as an identity fingerprint for an LLM, where the dog's appearance strongly indicates the LLM's base model. Experimental results across various LLMs demonstrate the effectiveness of our method, the generated dog image remains invariant to different training steps, including SFT, RLHF, or even continued pretraining with augmented vocabulary in a new language.
Large language models (LLMs) and their variants have shown extraordinary efficacy across numerous downstream natural language processing (NLP) tasks, which has presented a new vision for the development of NLP. Despite their remarkable performance in natural language generating (NLG), LLMs lack a distinct focus on the emotion understanding domain. As a result, using LLMs for emotion recognition may lead to suboptimal and inadequate precision. Another limitation of LLMs is that they are typical trained without leveraging multi-modal information. To overcome these limitations, we propose DialogueLLM, a context and emotion knowledge tuned LLM that is obtained by fine-tuning LLaMA models with 13,638 multi-modal (i.e., texts and videos) emotional dialogues. The visual information is considered as the supplementary knowledge to construct high-quality instructions. We offer a comprehensive evaluation of our proposed model on three benchmarking emotion recognition in conversations (ERC) datasets and compare the results against the SOTA baselines and other SOTA LLMs. Additionally, DialogueLLM-7B can be easily trained using LoRA on a 40GB A100 GPU in 5 hours, facilitating reproducibility for other researchers.
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.
The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machines to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.