亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given an alphabet size $m\in\mathbb{N}$ thought of as a constant, and $\vec{k} = (k_1,\ldots,k_m)$ whose entries sum of up $n$, the $\vec{k}$-multi-slice is the set of vectors $x\in [m]^n$ in which each symbol $i\in [m]$ appears precisely $k_i$ times. We show an invariance principle for low-degree functions over the multi-slice, to functions over the product space $([m]^n,\mu^n)$ in which $\mu(i) = k_i/n$. This answers a question raised by Filmus et al. As applications of the invariance principle, we show: 1. An analogue of the "dictatorship test implies computational hardness" paradigm for problems with perfect completeness, for a certain class of dictatorship tests. Our computational hardness is proved assuming a recent strengthening of the Unique-Games Conjecture, called the Rich $2$-to-$1$ Games Conjecture. Using this analogue, we show that assuming the Rich $2$-to-$1$ Games Conjecture, (a) there is an $r$-ary CSP $\mathcal{P}_r$ for which it is NP-hard to distinguish satisfiable instances of the CSP and instances that are at most $\frac{2r+1}{2^r} + o(1)$ satisfiable, and (b) hardness of distinguishing $3$-colorable graphs, and graphs that do not contain an independent set of size $o(1)$. 2. A reduction of the problem of studying expectations of products of functions on the multi-slice to studying expectations of products of functions on correlated, product spaces. In particular, we are able to deduce analogues of the Gaussian bounds from \cite{MosselGaussian} for the multi-slice. 3. In a companion paper, we show further applications of our invariance principle in extremal combinatorics, and more specifically to proving removal lemmas of a wide family of hypergraphs $H$ called $\zeta$-forests, which is a natural extension of the well-studied case of matchings.

相關內容

迄今為止,產品設計師最友好的交互動畫軟件。

Nonogram is a logic puzzle consisting of a rectangular grid with an objective to color every cell black or white such that the lengths of blocks of consecutive black cells in each row and column are equal to the given numbers. In 2010, Chien and Hon developed the first physical zero-knowledge proof for Nonogram, which allows a prover to physically show that he/she knows a solution of the puzzle without revealing it. However, their protocol requires special tools such as scratch-off cards and a machine to seal the cards, which are difficult to find in everyday life. Their protocol also has a nonzero soundness error. In this paper, we propose a more practical physical zero-knowledge proof for Nonogram that uses only a deck of regular paper cards and also has perfect soundness.

We describe a model for polarization in multi-agent systems based on Esteban and Ray's standard measure of polarization from economics. Agents evolve by updating their beliefs (opinions) based on an underlying influence graph, as in the standard DeGroot model for social learning, but under a confirmation bias; i.e., a discounting of opinions of agents with dissimilar views. We show that even under this bias polarization eventually vanishes (converges to zero) if the influence graph is strongly-connected. If the influence graph is a regular symmetric circulation, we determine the unique belief value to which all agents converge. Our more insightful result establishes that, under some natural assumptions, if polarization does not eventually vanish then either there is a disconnected subgroup of agents, or some agent influences others more than she is influenced. We also prove that polarization does not necessarily vanish in weakly-connected graphs under confirmation bias. Furthermore, we show how our model relates to the classic DeGroot model for social learning. We illustrate our model with several simulations of a running example about polarization over vaccines and of other case studies. The theoretical results and simulations will provide insight into the phenomenon of polarization.

Stochastic variance reduced gradient (SVRG) is a popular variance reduction technique for accelerating stochastic gradient descent (SGD). We provide a first analysis of the method for solving a class of linear inverse problems in the lens of the classical regularization theory. We prove that for a suitable constant step size schedule, the method can achieve an optimal convergence rate in terms of the noise level (under suitable regularity condition) and the variance of the SVRG iterate error is smaller than that by SGD. These theoretical findings are corroborated by a set of numerical experiments.

iGraphMatch is an R package for finding corresponding vertices between two graphs, also known as graph matching. The package implements three categories of prevalent graph matching algorithms including relaxation-based, percolation-based, and spectral-based, which are applicable to matching graphs under general settings: weighted directed graphs of different order and graphs of multiple layers. We provide versatile options to incorporate prior information in the form of seeds with or without noise and similarity scores. In addition, iGraphMatch provides functions to summarize the graph matching results in terms of several evaluation measures and visualize the matching performance. Finally, the package enables users to sample correlated random graph pairs from classic random graph models to generate data for simulations. This paper illustrates the practical applications of the package to the analysis of graph matching by detailed examples using real data from communication, neuron, and transportation networks.

Time-to-event endpoints show an increasing popularity in phase II cancer trials. The standard statistical tool for such one-armed survival trials is the one-sample log-rank test. Its distributional properties are commonly derived in the large sample limit. It is however known from the literature, that the asymptotical approximations suffer when sample size is small. There have already been several attempts to address this problem. While some approaches do not allow easy power and sample size calculations, others lack a clear theoretical motivation and require further considerations. The problem itself can partly be attributed to the dependence of the compensated counting process and its variance estimator. For this purpose, we suggest a variance estimator which is uncorrelated to the compensated counting process. Moreover, this and other present approaches to variance estimation are covered as special cases by our general framework. For practical application, we provide sample size and power calculations for any approach fitting into this framework. Finally, we use simulations and real world data to study the empirical type I error and power performance of our methodology as compared to standard approaches.

We study the expressive power of subrecursive probabilistic higher-order calculi. More specifically, we show that endowing a very expressive deterministic calculus like G\"odel's $\mathbb{T}$ with various forms of probabilistic choice operators may result in calculi which are not equivalent as for the class of distributions they give rise to, although they all guarantee almost-sure termination. Along the way, we introduce a probabilistic variation of the classic reducibility technique, and we prove that the simplest form of probabilistic choice leaves the expressive power of $\mathbb{T}$ essentially unaltered. The paper ends with some observations about the functional expressive power: expectedly, all the considered calculi capture the functions which $\mathbb{T}$ itself represents, at least when standard notions of observations are considered.

In 1991, Roth introduced a natural generalization of rank metric codes, namely tensor codes. The latter are defined to be subspaces of $r$-tensors where the ambient space is endowed with the tensor rank as a distance function. In this work, we describe the general class of tensor codes and we study their invariants that correspond to different families of anticodes. In our context, an anticode is a perfect space that has some additional properties. A perfect space is one that is spanned by tensors of rank 1. Our use of the anticode concept is motivated by an interest in capturing structural properties of tensor codes. In particular, we indentify four different classes of tensor anticodes and show how these gives different information on the codes they describe. We also define the generalized tensor binomial moments and the generalized tensor weight distribution of a code and establish a bijection between these invariants. We use the generalized tensor binomial moments to define the concept of an $i$-tensor BMD code, which is an extremal code in relation to an inequality arising from them. Finally, we give MacWilliams identities for generalized tensor binomial moments.

The use of orthogonal projections on high-dimensional input and target data in learning frameworks is studied. First, we investigate the relations between two standard objectives in dimension reduction, maximizing variance and preservation of pairwise relative distances. The derivation of their asymptotic correlation and numerical experiments tell that a projection usually cannot satisfy both objectives. In a standard classification problem we determine projections on the input data that balance them and compare subsequent results. Next, we extend our application of orthogonal projections to deep learning frameworks. We introduce new variational loss functions that enable integration of additional information via transformations and projections of the target data. In two supervised learning problems, clinical image segmentation and music information classification, the application of the proposed loss functions increase the accuracy.

Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.

This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.

北京阿比特科技有限公司