Data augmentation is vital for deep learning neural networks. By providing massive training samples, it helps to improve the generalization ability of the model. Weakly supervised semantic segmentation (WSSS) is a challenging problem that has been deeply studied in recent years, conventional data augmentation approaches for WSSS usually employ geometrical transformations, random cropping and color jittering. However, merely increasing the same contextual semantic data does not bring much gain to the networks to distinguish the objects, e.g., the correct image-level classification of "aeroplane" may be not only due to the recognition of the object itself, but also its co-occurrence context like "sky", which will cause the model to focus less on the object features. To this end, we present a Context Decoupling Augmentation (CDA) method, to change the inherent context in which the objects appear and thus drive the network to remove the dependence between object instances and contextual information. To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
Recently, zero-shot image classification by vision-language pre-training has demonstrated incredible achievements, that the model can classify arbitrary category without seeing additional annotated images of that category. However, it is still unclear how to make the zero-shot recognition working well on broader vision problems, such as object detection and semantic segmentation. In this paper, we target for zero-shot semantic segmentation, by building it on an off-the-shelf pre-trained vision-language model, i.e., CLIP. It is difficult because semantic segmentation and the CLIP model perform on different visual granularity, that semantic segmentation processes on pixels while CLIP performs on images. To remedy the discrepancy on processing granularity, we refuse the use of the prevalent one-stage FCN based framework, and advocate a two-stage semantic segmentation framework, with the first stage extracting generalizable mask proposals and the second stage leveraging an image based CLIP model to perform zero-shot classification on the masked image crops which are generated in the first stage. Our experimental results show that this simple framework surpasses previous state-of-the-arts by a large margin: +29.5 hIoU on the Pascal VOC 2012 dataset, and +8.9 hIoU on the COCO Stuff dataset. With its simplicity and strong performance, we hope this framework to serve as a baseline to facilitate the future research.
Weakly supervised object localization (WSOL) relaxes the requirement of dense annotations for object localization by using image-level classification masks to supervise its learning process. However, current WSOL methods suffer from excessive activation of background locations and need post-processing to obtain the localization mask. This paper attributes these issues to the unawareness of background cues, and propose the background-aware classification activation map (B-CAM) to simultaneously learn localization scores of both object and background with only image-level labels. In our B-CAM, two image-level features, aggregated by pixel-level features of potential background and object locations, are used to purify the object feature from the object-related background and to represent the feature of the pure-background sample, respectively. Then based on these two features, both the object classifier and the background classifier are learned to determine the binary object localization mask. Our B-CAM can be trained in end-to-end manner based on a proposed stagger classification loss, which not only improves the objects localization but also suppresses the background activation. Experiments show that our B-CAM outperforms one-stage WSOL methods on the CUB-200, OpenImages and VOC2012 datasets.
Transformers have shown impressive performance in various natural language processing and computer vision tasks, due to the capability of modeling long-range dependencies. Recent progress has demonstrated that combining such Transformers with CNN-based semantic image segmentation models is very promising. However, it is not well studied yet on how well a pure Transformer based approach can achieve for image segmentation. In this work, we explore a novel framework for semantic image segmentation, which is encoder-decoder based Fully Transformer Networks (FTN). Specifically, we first propose a Pyramid Group Transformer (PGT) as the encoder for progressively learning hierarchical features, meanwhile reducing the computation complexity of the standard Visual Transformer (ViT). Then, we propose a Feature Pyramid Transformer (FPT) to fuse semantic-level and spatial-level information from multiple levels of the PGT encoder for semantic image segmentation. Surprisingly, this simple baseline can achieve better results on multiple challenging semantic segmentation and face parsing benchmarks, including PASCAL Context, ADE20K, COCOStuff, and CelebAMask-HQ. The source code will be released on //github.com/BR-IDL/PaddleViT.
Recent semi-supervised learning (SSL) methods are commonly based on pseudo labeling. Since the SSL performance is greatly influenced by the quality of pseudo labels, mutual learning has been proposed to effectively suppress the noises in the pseudo supervision. In this work, we propose robust mutual learning that improves the prior approach in two aspects. First, the vanilla mutual learners suffer from the coupling issue that models may converge to learn homogeneous knowledge. We resolve this issue by introducing mean teachers to generate mutual supervisions so that there is no direct interaction between the two students. We also show that strong data augmentations, model noises and heterogeneous network architectures are essential to alleviate the model coupling. Second, we notice that mutual learning fails to leverage the network's own ability for pseudo label refinement. Therefore, we introduce self-rectification that leverages the internal knowledge and explicitly rectifies the pseudo labels before the mutual teaching. Such self-rectification and mutual teaching collaboratively improve the pseudo label accuracy throughout the learning. The proposed robust mutual learning demonstrates state-of-the-art performance on semantic segmentation in low-data regime.
We present a novel approach to unsupervised learning for video object segmentation (VOS). Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime. We rely on uniform grid sampling to extract a set of anchors and train our model to disambiguate between them on both inter- and intra-video levels. However, a naive scheme to train such a model results in a degenerate solution. We propose to prevent this with a simple regularisation scheme, accommodating the equivariance property of the segmentation task to similarity transformations. Our training objective admits efficient implementation and exhibits fast training convergence. On established VOS benchmarks, our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.
Semantic segmentation is a challenging task in the absence of densely labelled data. Only relying on class activation maps (CAM) with image-level labels provides deficient segmentation supervision. Prior works thus consider pre-trained models to produce coarse saliency maps to guide the generation of pseudo segmentation labels. However, the commonly used off-line heuristic generation process cannot fully exploit the benefits of these coarse saliency maps. Motivated by the significant inter-task correlation, we propose a novel weakly supervised multi-task framework termed as AuxSegNet, to leverage saliency detection and multi-label image classification as auxiliary tasks to improve the primary task of semantic segmentation using only image-level ground-truth labels. Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations. The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks. The mutual boost between pseudo label updating and cross-task affinity learning enables iterative improvements on segmentation performance. Extensive experiments demonstrate the effectiveness of the proposed auxiliary learning network structure and the cross-task affinity learning method. The proposed approach achieves state-of-the-art weakly supervised segmentation performance on the challenging PASCAL VOC 2012 and MS COCO benchmarks.
Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, which requires pixel-level annotations. This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation. We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths, which can be used for training more accurate segmentation models. In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes, and the underlying relations between a pair of images are characterized by an efficient co-attention mechanism. Moreover, in order to prevent the model from paying excessive attention to common semantics only, we further propose a graph dropout layer, encouraging the model to learn more accurate and complete object responses. The whole network is end-to-end trainable by iterative message passing, which propagates interaction cues over the images to progressively improve the performance. We conduct experiments on the popular PASCAL VOC 2012 and COCO benchmarks, and our model yields state-of-the-art performance. Our code is available at: //github.com/Lixy1997/Group-WSSS.
Weakly supervised learning has emerged as a compelling tool for object detection by reducing the need for strong supervision during training. However, major challenges remain: (1) differentiation of object instances can be ambiguous; (2) detectors tend to focus on discriminative parts rather than entire objects; (3) without ground truth, object proposals have to be redundant for high recalls, causing significant memory consumption. Addressing these challenges is difficult, as it often requires to eliminate uncertainties and trivial solutions. To target these issues we develop an instance-aware and context-focused unified framework. It employs an instance-aware self-training algorithm and a learnable Concrete DropBlock while devising a memory-efficient sequential batch back-propagation. Our proposed method achieves state-of-the-art results on COCO ($12.1\% ~AP$, $24.8\% ~AP_{50}$), VOC 2007 ($54.9\% ~AP$), and VOC 2012 ($52.1\% ~AP$), improving baselines by great margins. In addition, the proposed method is the first to benchmark ResNet based models and weakly supervised video object detection. Code, models, and more details will be made available at: //github.com/NVlabs/wetectron.
In this paper, we address the problem of semantic segmentation and focus on the context aggregation strategy for robust segmentation. Our motivation is that the label of a pixel is the category of the object that the pixel belongs to. We present a simple yet effective approach, object-contextual representations, characterizing a pixel by exploiting the representation of the corresponding object class. First, we construct object regions based on a feature map supervised by the ground-truth segmentation, and then compute the object region representations. Second, we compute the representation similarity between each pixel and each object region, and augment the representation of each pixel with an object contextual representation, which is a weighted aggregation of all the object region representations according to their similarities with the pixel. We empirically demonstrate that the proposed approach achieves competitive performance on six challenging semantic segmentation benchmarks: Cityscapes, ADE20K, LIP, PASCAL VOC 2012, PASCAL-Context and COCO-Stuff. Notably, we achieved the \nth{2} place on the Cityscapes leader-board with a single model.
Semantic segmentation is one of the basic topics in computer vision, it aims to assign semantic labels to every pixel of an image. Unbalanced semantic label distribution could have a negative influence on segmentation accuracy. In this paper, we investigate using data augmentation approach to balance the semantic label distribution in order to improve segmentation performance. We propose using generative adversarial networks (GANs) to generate realistic images for improving the performance of semantic segmentation networks. Experimental results show that the proposed method can not only improve segmentation performance on those classes with low accuracy, but also obtain 1.3% to 2.1% increase in average segmentation accuracy. It shows that this augmentation method can boost accuracy and be easily applicable to any other segmentation models.