亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate and reliable registration of longitudinal spine images is essential for assessment of disease progression and surgical outcome. Implementing a fully automatic and robust registration is crucial for clinical use, however, it is challenging due to substantial change in shape and appearance due to lesions. In this paper we present a novel method to automatically align longitudinal spine CTs and accurately assess lesion progression. Our method follows a two-step pipeline where vertebrae are first automatically localized, labeled and 3D surfaces are generated using a deep learning model, then longitudinally aligned using a Gaussian mixture model surface registration. We tested our approach on 37 vertebrae, from 5 patients, with baseline CTs and 3, 6, and 12 months follow-ups leading to 111 registrations. Our experiment showed accurate registration with an average Hausdorff distance of 0.65 mm and average Dice score of 0.92.

相關內容

 Surface 是微軟公司( )旗下一系列使用 Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和 Surface Book 三個系列。 2012 年 6 月 18 日,初代 Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。

In randomized clinical trials, adjusting for baseline covariates can improve credibility and efficiency for demonstrating and quantifying treatment effects. This article studies the augmented inverse propensity weighted (AIPW) estimator, which is a general form of covariate adjustment that uses linear, generalized linear, and non-parametric or machine learning models for the conditional mean of the response given covariates. Under covariate-adaptive randomization, we establish general theorems that show a complete picture of the asymptotic normality, {efficiency gain, and applicability of AIPW estimators}. In particular, we provide for the first time a rigorous theoretical justification of using machine learning methods with cross-fitting for dependent data under covariate-adaptive randomization. Based on the general theorems, we offer insights on the conditions for guaranteed efficiency gain and universal applicability {under different randomization schemes}, which also motivate a joint calibration strategy using some constructed covariates after applying AIPW. Our methods are implemented in the R package RobinCar.

Prominent solutions for medical image segmentation are typically tailored for automatic or interactive setups, posing challenges in facilitating progress achieved in one task to another.$_{\!}$ This$_{\!}$ also$_{\!}$ necessitates$_{\!}$ separate$_{\!}$ models for each task, duplicating both training time and parameters.$_{\!}$ To$_{\!}$ address$_{\!}$ above$_{\!}$ issues,$_{\!}$ we$_{\!}$ introduce$_{\!}$ S2VNet,$_{\!}$ a$_{\!}$ universal$_{\!}$ framework$_{\!}$ that$_{\!}$ leverages$_{\!}$ Slice-to-Volume$_{\!}$ propagation$_{\!}$ to$_{\!}$ unify automatic/interactive segmentation within a single model and one training session. Inspired by clustering-based segmentation techniques, S2VNet makes full use of the slice-wise structure of volumetric data by initializing cluster centers from the cluster$_{\!}$ results$_{\!}$ of$_{\!}$ previous$_{\!}$ slice.$_{\!}$ This enables knowledge acquired from prior slices to assist in the segmentation of the current slice, further efficiently bridging the communication between remote slices using mere 2D networks. Moreover, such a framework readily accommodates interactive segmentation with no architectural change, simply by initializing centroids from user inputs. S2VNet distinguishes itself by swift inference speeds and reduced memory consumption compared to prevailing 3D solutions. It can also handle multi-class interactions with each of them serving to initialize different centroids. Experiments on three benchmarks demonstrate S2VNet surpasses task-specified solutions on both automatic/interactive setups.

Medical image registration is vital for disease diagnosis and treatment with its ability to merge diverse information of images, which may be captured under different times, angles, or modalities. Although several surveys have reviewed the development of medical image registration, these surveys have not systematically summarized methodologies of existing medical image registration methods. To this end, we provide a comprehensive review of these methods from traditional and deep learning-based directions, aiming to help audiences understand the development of medical image registration quickly. In particular, we review recent advances in retinal image registration at the end of each section, which has not attracted much attention. Additionally, we also discuss the current challenges of retinal image registration and provide insights and prospects for future research.

We explore a spectral initialization method that plays a central role in contemporary research on signal estimation in nonconvex scenarios. In a noiseless phase retrieval framework, we precisely analyze the method's performance in the high-dimensional limit when sensing vectors follow a multivariate Gaussian distribution for two rotationally invariant models of the covariance matrix C. In the first model C is a projector on a lower dimensional space while in the second it is a Wishart matrix. Our analytical results extend the well-established case when C is the identity matrix. Our examination shows that the introduction of biased spatial directions leads to a substantial improvement in the spectral method's effectiveness, particularly when the number of measurements is less than the signal's dimension. This extension also consistently reveals a phase transition phenomenon dependent on the ratio between sample size and signal dimension. Surprisingly, both of these models share the same threshold value.

Successive interference cancellation (SIC) is used to approach the achievable information rates (AIRs) of joint detection and decoding for long-haul optical fiber links. The AIRs of memoryless ring constellations are compared to those of circularly symmetric complex Gaussian modulation for surrogate channel models with correlated phase noise. Simulations are performed for 1000 km of standard single-mode fiber with ideal Raman amplification. In this setup, 32 rings and 16 SIC-stages with Gaussian message-passing receivers achieve the AIR peaks of previous work. The computational complexity scales in proportion to the number of SIC-stages, where one stage has the complexity of separate detection and decoding.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司